×

zbMATH — the first resource for mathematics

Bubble finite elements for the primitive equations of the ocean. (English) Zbl 1095.76031
Summary: We introduce two original mixed methods for the numerical resolution of the (stationary) primitive equations (PE) of the ocean. The PE govern the behavior of oceanic flows in shallow domains for large time scales. We use a reduced formulation [J. L. Lions et al., Nonlinearity 5, No. 5, 1007–1053 (1992; Zbl 0766.35039)] involving horizontal velocities and surface pressures. By using bubble functions constructed ad-hoc, we are able to define two stable mixed methods requiring a low number of degrees of freedom. The first one is based on the addition of bubbles of reduced support to \(\mathbb P_1(\mathbf x) \otimes \mathbb P_1(z)\) velocities elementwise. The second one makes use of conic bubbles of extended support along the vertical coordinate. The latter constitutes a genuine mini-element for the PE, e.g., it requires the least number of extra degrees of freedom to stabilize piecewise linear hydrostatic pressures. Both methods satisfy a specific inf-sup condition and provide stability and convergence. Finally, we compare several numerical features of the proposed pairs in the context of other finite element methods found in the literature.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
Software:
TELEMAC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equation. Calcolo 21, 337–344 (1984) · Zbl 0593.76039 · doi:10.1007/BF02576171
[2] Azérad, P.: Analyse et approximation du problème de Stokes dans un bassin peu profond, C.R.A.S Paris, t.318, 53–58 (1994) · Zbl 0795.76014
[3] Azérad, P., Guillén, F.: Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33(4), 847–859 (2001) · Zbl 0999.35072 · doi:10.1137/S0036141000375962
[4] Bates, P., Hervouet, J.M.: The TELEMAC Modelling System. Hydrological Processes, Vol. 14, 13, Wiley, 2000
[5] Bernardi, C.: Optimal Finite Element interpolation on curved domains. SIAM J. Numer. Anal. Vol. 26(5), 1212– 1240 (1989) · Zbl 0678.65003 · doi:10.1137/0726068
[6] Besson, O.: Finite Element solution of Navier-Stokes equations in shallow domains, Eccomas 2000 Congress Proceedings (CD-Rom), Barcelona, 2000 [http://www.unine.ch/math/personnel/equipes/besson/besson_ecco.pdf]. · Zbl 1125.86300
[7] Besson, O., Laydi, M.R.: Some estimates for the anisotropic Navier-Stokes Equations and for the hydrostatic approximation, Math. Mod. and Num. Anal. Vol.26(7), 855–865 (1992) · Zbl 0765.76017
[8] Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Springer-Verlag, New York, 2002 · Zbl 1012.65115
[9] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin, 1991 · Zbl 0788.73002
[10] Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods, Numer. Math. 89, 457–491 (2001) · Zbl 1009.65067
[11] Brezzi, F., Pitkäranta, J.: On the stabilization of Finite Elements approximations of the Stokes problem, In: Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, 10, W. Hackbush eds., pp.11–19 (1984)
[12] Bryan, K.: A numerical method for the study of the circulation of the World Ocean, J. Comp. Physics, 4, 347–376 (1969) · Zbl 0195.55504 · doi:10.1016/0021-9991(69)90004-7
[13] Chacón Rebollo, T.: An analysis technique for Stabilized Finite Element solution of Incompressible Flows, Mathematical Modelling and Numerical Analysis, 35, 57–89 (2001) · Zbl 0990.76039
[14] Chacón Rebollo, T., Chacón Vera, E., Lewandowski, R.: Analysis of the Hydrostatic Approximation in Oceanography with compression term, Mathematical Modelling and Numerical Analysis, Vol. 34(3), 525–537 (2000) · Zbl 0978.76101
[15] Chacón Rebollo, T., Guillén González, F.: An intrinsic analysis of the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I, 330, 841–846 (2000) · Zbl 0959.35134
[16] Chacón Rebollo, T., Rodríguez Gómez, D.: A Stabilized Space-Time Discretization for the Primitive Equations in Oceanography. Numer. Math. 98, 427–475 (2004) · Zbl 1140.76440 · doi:10.1007/s00211-003-0497-3
[17] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1987
[18] Clément, P.: Approximation by Finite Element Functions using Local Regularization. R.A.I.R.O., R-2, 1975
[19] Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, Paris 2000
[20] Deleersnijder, E.: Modélisation Hydrodynamique Tridimensionelle de la Circulation Générale Estivale de la Region du Détroit de Bering, Ph.D. Thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain, 1992
[21] Droux, J.-J., Hughes, T.J.R.: A boundary integral modification of the Galerkin least squares formulation for the Stokes problem Comput. Methods Appl. Mech. Engrg. 113, 173–182 (1994) · Zbl 0845.76038 · doi:10.1016/0045-7825(94)90217-8
[22] Dutay, J.-C., Bullister, J.L., Doney, S.C., Orr, J.C., Najjar, R., Caldeira, K., Champin, J.-M., Drange, H., Follows, M., Gao, Y., Gruber, N., Hecht, M.W., Ishida, A., Joos, F., Lindsay, K., Madec, G., Maier-Reimer, E., Marshall, J.C., Matear, R.J., Monfray, P., Plattner, G.-K., Sarmiento, J., Schlitzer, R., Slater, R., Totterdell, I.J., Weirig, M.-F., Yamanaka, Y., Yool, A.: Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modelling, 4, 89–120, (2002) · doi:10.1016/S1463-5003(01)00013-0
[23] Fortin, M.: Analysis of the convergence of mixed finite element methods. R.A.I.R.O. Anal. Numer. 11, 341–354, (1977) · Zbl 0373.65055
[24] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlín 1988 · Zbl 0396.65070
[25] Guillén González, F., Masmoudi, N., Rodríguez Bellido, M.A.: Anisotropic estimates and strong solutions of the Primitive Equations. Differential and Integral Equations. 14(11), 1381–1408, (2001) · Zbl 1161.76454
[26] Kowalik, Z., Murty, T.S.: Numerical Modelling of Ocean Dynamics, Advanced Series on Ocean Engineering, 5, World Scientific, 1993
[27] Laydi, M.R.: Approximating a system of Navier-Stokes equations using the hydrostatic hypothesis and application. C. R. Acad. Sci. Paris, Série I, Vol. 323(4), 413–420 (1996) · Zbl 0859.76039
[28] Lions, J.L., Temam, R., Wang, S.: On the equations of the Large Scale Ocean, Nonlinearity, 5, 1007–1053 (1992) · Zbl 0766.35039
[29] Miglio, E., Quarteroni, A., Saleri, F.: Finite Element approximation of Quasi-3D shallow water equations. Comput. Methods Appl. Mech. Engrg. 174 355–369 (1999) · Zbl 0958.76046
[30] Nakajima, S., Kawahara, M.: Three dimensional analysis for incompressible viscous flow by hexahedral bubble element. Eccomas 2000 Congress Proceedings (CD-Rom), Barcelona, 2000
[31] Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbb{R}\)3, Numer. Math.50, 57–81 (1986) · Zbl 0625.65107
[32] Pedlosky, J.: Geophysical fluid dynamics, Springer-Verlag, 1982 · Zbl 0429.76001
[33] Scott, L.R., Zhang, S.Y.: Finite-element interpolation of nonsmooth functions satisfying boundary consditions, Math. Comp. 54(190), 483–493 (1990) · Zbl 0696.65007
[34] Speich, S., Madec, G., Crepon, M.: A strait outflow circulation process study: The case of the Alboran Sea, Journal of Physical Oceanography, Vol. 26(3), 320–240 (1996)
[35] Van der Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13, 631–644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[36] Vreugdenhil, C.B.: Numerical Methods for Shallow Water flow, Kluwer Academic Publishers, 1994 · Zbl 0829.47021
[37] Zuur, E.A.H.: The use of a reformulation of the Hydrostatic Approximation Navier-Stokes equations for Geophysical Fluid problems, Int. J. Numer. Meth. Fluids, 21, 549–570 (1995) · Zbl 0846.76053 · doi:10.1002/fld.1650210703
[38] Zuur, E.A.H., Dietrich, D.E.: The SOMS model and its application to Lake Neuchâtel, Aquatic Sciences, Vol. 52(2), 115–129 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.