×

zbMATH — the first resource for mathematics

Adjoint methods in data assimilation for estimating model error. (English) Zbl 1094.76556
Summary: Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly, and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the one-dimensional nonlinear shallow water equations demonstrate the effectiveness of the new procedure.

MSC:
76M99 Basic methods in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI