zbMATH — the first resource for mathematics

An easily implemented task-based parallel scheme for the Fourier pseudospectral solver applied to 2D Navier-Stokes turbulence. (English) Zbl 1093.76048
Summary: An efficient parallel scheme is proposed for performing direct numerical simulation (DNS) of two-dimensional Navier-Stokes turbulence at high Reynolds numbers. We illustrate the resulting numerical code by displaying relaxation to states close to those that have been predicted by statistical-mechanical methods which start from ideal (Euler) fluid mechanics. The validation of these predictions by DNS requires unusually long computation times on single-CPU workstations, and suggests the use of parallel computation. The performance of our MPI Fortran 90 code on the SGI Origin 3800 is reported, together with its comparison with another parallel method. A few computational results are presented that illustrate tests of the statistical-mechanical predictions.

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76F65 Direct numerical and large eddy simulation of turbulence
65Y05 Parallel numerical computation
Full Text: DOI
[1] Joyce, G.; Montgomery, D., Negative temperature states for the two- dimensional guiding center plasma, J. plasma phys., 10, 107-121, (1973)
[2] Matthaeus, W.H.; Stribling, W.T.; Martinez, D.; Oughton, S.; Montgomery, D., Decaying two-dimensional navier – stokes turbulence at very long times, Physica D, 51, 531-538, (1991) · Zbl 0735.76041
[3] Montgomery, D.; Matthaeus, W.H.; Stribling, W.T.; Martinez, D.; Oughton, S., Relaxation in two dimensions and the “sinh-poisson” equation, Phys. fluids A, 4, 3-6, (1992) · Zbl 0850.76485
[4] Pointin, Y.B.; Lundgren, T.S., Statistical mechanics of two-dimensional vortices in a bounded container, Phys. fluids, 19, 1459-1470, (1976) · Zbl 0339.76013
[5] Eyink, G.L.; Spohn, H., Negative temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. stat. phys., 70, 833-886, (1993) · Zbl 0945.82568
[6] Robert, R.; Sommeria, J., Statistical equilibrium states for two-dimensional flows, J. fluid mech., 229, 291-310, (1991) · Zbl 0850.76025
[7] Miller, J.; Weichman, P.B.; Cross, M.C., Statistical mechanics, euler’s equation, and jupiter’s red spot, Phys. rev. A, 45, 2328-2359, (1992)
[8] Yin, Z.; Montgomery, D.; Clercx, H.J.H., Alternative statistical – mechanical description of decaying 2D turbulence in terms of “patches“ and “points”, Phys. fluids, 15, 1937-1953, (2003) · Zbl 1186.76590
[9] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1987), Springer-Verlag New York, Berlin, p. 82-87
[10] Peyret, R., Spectral methods for incompressible viscous flow, (2002), Springer New York, Berlin · Zbl 1005.76001
[11] Chen, S.; Doolen, G.D.; Kraichnan, R.H.; She, Z.S., On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence, Phys. fluids, 5, 458-463, (1993)
[12] Jiménez, J.; Wray, A.A.; Saffman, P.G.; Rogallo, R.S., The structure of intense vorticity in isotropic turbulence, J. fluid mech., 255, 65-90, (1993) · Zbl 0800.76156
[13] Yamamoto, K., Direct numerical simulation of isotropic turbulence using NAL numerical wind tunnel, (), 13-20
[14] Pelz, R.B., The parallel Fourier pseudospectral method, J. comput. phys., 92, 296-312, (1991) · Zbl 0709.76105
[15] Jackson, E.; She, Z.S.; Orszag, S.A., A case study in parallel computing: I. homogeneous turbulence on a hypercube, J. sci. comput., 6, 27-45, (1991) · Zbl 0737.76056
[16] Torres, D.J.; Coutsias, E.A., Pseudospectral solution of the two-dimensional navier – stokes equation in a disk, SIAM J. sci. comput., 21, 378-403, (1999) · Zbl 0949.76065
[17] Fournier, E.; Gauthier, S.; Renaud, F., 2D pseudo-spectral parallel navier – stokes simulations of compressible rayleigh – taylor instability, Comput. fluids, 31, 569-587, (2002) · Zbl 1059.76053
[18] Segre, E.; Kida, S., Late states of incompressible 2D decaying vorticity field, Fluid dyn. res., 23, 89-112, (1998) · Zbl 1051.76584
[19] McWilliams, J.C., The emergence of isolated coherent vortices in turbulent flow, J. fluid mech., 146, 21-43, (1984) · Zbl 0561.76059
[20] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A., A high-performance, portable implementation of the MPI message passing interface standard, Parallel comput., 22, 789-828, (1996) · Zbl 0875.68206
[21] Gropp, W.; Lusk, E.; Skjellum, A., Using MPI: portable parallel programming with the message-passing interface, (1999), MIT Press Cambridge, MA
[22] Gropp, W.; Lusk, E.; Thakur, R., Using MPI-2: advance features of the message-passing interface, (1999), MIT Press Cambridge, MA
[23] An overview of the SGI Message Passing Toolkit (MPT) for release 1.6. Available from: http://techpubs.sgi.com/library/tpl/cgi-bin/search.cgi
[24] Chu CY. Comparison of two-dimensional FFT methods on the hypercube. In: Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Vol. 2. Pasadena, California, United States, 1988. p. 1430-7
[25] Chasnov, J.R., On the decay of two-dimensional homogeneous turbulence, Phys. fluids, 9, 171-180, (1997) · Zbl 0892.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.