zbMATH — the first resource for mathematics

Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations. (English) Zbl 1093.65096
The authors propose a numerical method for a parabolic equation with delay. The spatial derivative is handled with spectral collocation, and the resulting system of ordinary differential equations is solved by waveform relaxation, which is a form of Picard iteration. It is shown that the method converges.

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R10 Functional partial differential equations
35K55 Nonlinear parabolic equations
Full Text: DOI
[1] Burrage, K., Parallel and sequential methods for ordinary differential equations, (1995), Oxford University Press Oxford · Zbl 0838.65073
[2] Burrage, K.; Jackiewicz, Z.; Nørsett, S.P.; Renaut, R., Preconditioning waveform relaxation iterations for differential systems, Bit, 36, 54-76, (1996) · Zbl 0864.65049
[3] Burrage, K.; Jackiewicz, Z.; Renaut, R., The performance of preconditioned waveform relaxation techniques for pseudospectral methods, Numer. methods partial differential equations, 12, 245-263, (1996) · Zbl 0863.65063
[4] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid mechanics, (1988), Springer New York · Zbl 0658.76001
[5] Cohen, D.S.; Hagan, P.S.; Simpson, H.C., Spatial structures in predator-prey communities with hereditary effects and diffusion, Math. biosci., 44, 167-177, (1979) · Zbl 0399.92016
[6] Fornberg, B., A practical guide to pseudospectral methods, (1996), Cambridge University Press Cambridge · Zbl 0844.65084
[7] G. Friesecke, A global bifurcation result for a delay-diffusion equation, Tech. Report No. 92, University of Bonn · Zbl 0763.35008
[8] Friesecke, G., Exponentially growing solutions for a delay-diffusion equation with negative feedback, J. differential equations, 98, 1-18, (1992) · Zbl 0763.35008
[9] Green, D.; Stech, H.W., Diffusion and hereditary effects in a class of population models, (), 19-28
[10] Higham, D.J.; Sardar, T.K., Existence and stability of fixed points for a discretized nonlinear reaction – diffusion equation with delay, Appl. numer. math., 18, 155-173, (1995) · Zbl 0834.65079
[11] Jackiewicz, Z.; Kwapisz, M., Convergence of waveform relaxation methods for differential-algebraic systems, SIAM J. numer. anal., 33, 2303-2317, (1996) · Zbl 0889.34064
[12] Jackiewicz, Z.; Kwapisz, M.; Lo, E., Waveform relaxation methods for functional-differential systems of neutral type, J. math. anal. appl., 207, 255-285, (1997) · Zbl 0874.65056
[13] Kuang, Y., Delay differential equations with applications in population dynamics, (1993), Academic Press New York · Zbl 0777.34002
[14] E. Lelarasmee, The Waveform Relaxation Method for the Time Domain Analysis of Large Scale Nonlinear Dynamical Systems, PhD thesis, University of California, Berkeley, CA, 1982
[15] Lelarasmee, E.; Ruehli, A.; Sangiovanni-Vincentelli, A., The waveform relaxation methods for time domain analysis of large scale integrated circuits, IEEE trans. CAD IC syst., 1, 131-145, (1982)
[16] Luckhaus, S., Global boundedness for a delay-differential equation, Trans. amer. math. soc., 294, 767-774, (1986) · Zbl 0604.35040
[17] Ludwig, D.; Jones, D.D.; Holling, C.S., Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. anim. ecol., 47, 315-332, (1978)
[18] Murray, J.D., Spatial structures in predator-prey communities—a nonlinear time delay diffusional model, Math. biosci., 31, 73-85, (1976) · Zbl 0335.92002
[19] Murray, J.D., Mathematical biology, (1993), Springer Berlin · Zbl 0779.92001
[20] Murray, J.D., Mathematical biology. I. an introduction, (2002), Springer New York
[21] T.K. Sardar, Dynamics of Constant and Variable Stepsize Methods for a Nonlinear Reaction-Diffusion Model with Delay, PhD thesis, University of Dundee, Dundee, 1996
[22] Trefethen, L.N., Spectral methods in Matlab, (2000), SIAM Philadelphia, PA · Zbl 0953.68643
[23] Verhulst, P.F., Notice sur la loi que la population suit dans son accroissement, Corr. math. phys., 10, 113-121, (1838)
[24] Verhulst, P.F., Recherche mathémathiques sur le loi d’accroissement de la population, Nouveau Mém. acad. roy. sci. belles lett. bruxelles, 18, 3-38, (1845)
[25] Welfert, B.D., On the eigenvalues of second-order pseudospectral differentiation operators, Comput. methods appl. mech. engrg., 116, 281-292, (1994) · Zbl 0824.65083
[26] Welfert, B.D., Generation of pseudospectral differentiation matrices. I, SIAM J. numer. anal., 34, 1640-1657, (1997) · Zbl 0889.65013
[27] Wright, E.M., A non-linear difference-differential equation, J. reine angew. math., 494, 66-87, (1955) · Zbl 0064.34203
[28] Zubik-Kowal, B.; Vandewalle, S., Waveform relaxation for functional-differential equations, SIAM J. sci. comput., 21, 207-226, (1999) · Zbl 0945.65107
[29] Zubik-Kowal, B., Chebyshev pseudospectral method and waveform relaxation for differential and differential-functional parabolic equations, Appl. numer. math., 34, 309-328, (2000) · Zbl 0948.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.