×

zbMATH — the first resource for mathematics

Limit cycle and bifurcation of nonlinear problems. (English) Zbl 1093.34520
The author considers the following nonlinear equation \[ \ddot x+ x+ \varepsilon f(x,\dot x,\ddot x)= 0,\tag{1} \] where the parameter \(\varepsilon\) needs not to be small. The goal of the paper is to find limit cycles of (1) and bifurcation curves. To this end, the author proposes a simple but effective method.

MSC:
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Determination of limit cycles for strongly nonlinear oscillators, Phys rev lett, 90, 17, 174301, (2003)
[2] He, J.H., Homotopy perturbation technique, Comput methods appl mech eng, 178, 257-262, (1999) · Zbl 0956.70017
[3] He, J.H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int J non-linear mech, 35, 37-43, (2000) · Zbl 1068.74618
[4] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Appl math comput, 135, 1, 73-79, (2003) · Zbl 1030.34013
[5] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int J non-linear sci numer simul, 6, 2, 207-208, (2005) · Zbl 1401.65085
[6] El-Shahed, M., Application of he’s homotopy perturbation method to volterra’s integro-differential equation, Int. J. non-linear sci numer simul, 6, 2, 163-168, (2005) · Zbl 1401.65150
[7] He, J.H., Variational iteration method: a kind of nonlinear analytical technique: some examples, Int J nonlinear mech, 34, 4, 699-708, (1999) · Zbl 1342.34005
[8] Marinca, V., An approximate solution for 1-D weakly nonlinear oscillations, Int J non-linear sci numer simul, 3, 107-120, (2002) · Zbl 1079.34028
[9] Drăgănescu, Gh-E; Căpălnăşan, V., Polycrystalline solids, nonlinear relaxation phenomena in polycrystalline solids, Int J non-linear sci numer simul, 4, 3, 219-226, (2004)
[10] He, J.H., Modified Lindstedt-poincare methods for some strongly nonlinear oscillations. part I: expansion of a constant, Int J non-linear mech, 37, 2, 309-314, (2002) · Zbl 1116.34320
[11] He, J.H., Modified Lindstedt-poincare methods for some strongly nonlinear oscillations. part II: A new transformation, Int J non-linear mech, 37, 2, 315-320, (2002) · Zbl 1116.34321
[12] He, J.H., Modified Lindstedt-poincare methods for some strongly nonlinear oscillations. part III: double series expansion, Int J non-linear sci numer simul, 2, 4, 317-320, (2001) · Zbl 1072.34507
[13] Liu, H.M., Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-poincare method, Chaos, solitons & fractals, 23, 577-579, (2005) · Zbl 1078.34509
[14] Liu, H.M., Variational approach to nonlinear electrochemical system, Int J non-linear sci numer simul, 5, 1, 95-96, (2004)
[15] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, soliton & fractals, 19, 4, 847-851, (2004) · Zbl 1135.35303
[16] Hao, T.-H., Application of Lagrange multiplier method to the search for variational principles of nonlinear electrostrictive materials, Int J non-linear sci numer simul, 4, 3, 307-310, (2003)
[17] Hao, T.-H., Application of the Lagrange multiplier method the semi-inverse method to the search for generalized variational principle in quantum mechanics, Int J non-linear sci numer simul, 4, 3, 311-312, (2003)
[18] Hao, T.-H., Search for variational principles in electrodynamics by Lagrange method, Int J non-linear sci numer simul, 6, 2, 209-210, (2005) · Zbl 1401.78004
[19] He, J.H., Variational principle for nano thin film lubrication, Int J non-linear sci numer simul, 4, 3, 313-314, (2003)
[20] Zayed, E.M.E.; Zedan, H.A.; Gepreel, K.A., Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations, Int J non-linear sci numer simul, 5, 3, 221-234, (2004) · Zbl 1069.35080
[21] Abdusalam, H.A., On an improved complex tanh-function method, Int J non-linear sci numer simul, 6, 2, 99-106, (2005) · Zbl 1401.35012
[22] Abassy, T.A.; El-Tawil, M.A.; Saleh, H.K., The solution of KdV and mkdv equations using Adomian pade approximation, Int J non-linear sci numer simul, 5, 4, 327-340, (2004) · Zbl 1401.65122
[23] He, J.H., Gongcheng yu kexue zhong de jinshi feixianxing feixi fangfa, (2002), Henan Science and Technology Press Zhengzhou, (in Chinese, Asymptotic Methods in Engineering and Sciences, or Approximate Analytical Methods in Engineering and Sciences)
[24] Shen, J.; Xu, W., Bifurcations of smooth and non-smooth travelling wave solutions of the Degasperis-Procesi equation, Int J non-linear sci numer simul, 5, 4, 397-402, (2004) · Zbl 1401.35276
[25] Ma, S.; Lu, Q., Dynamical bifurcation for a predator-prey metapopulation model with delay, Int J non-linear sci numer simul, 6, 1, 13-18, (2005) · Zbl 1401.92032
[26] Zhang, Y.; Xu, J., Classification and computation of non-resonant double Hopf bifurcations and solutions in delayed van der Pol-Duffing system, Int J non-linear sci numer simul, 6, 1, 63-68, (2005) · Zbl 1401.37058
[27] Zhang, Z.; Bi, Q., Bifurcations of a generalized Camassa-Holm equation, Int J non-linear sci numer simul, 6, 1, 81-86, (2005) · Zbl 1401.37057
[28] Zheng, Y.; Fu, Y., Effect of damage on bifurcation and chaos of viscoelastic plates, Int J non-linear sci numer simul, 6, 1, 87-91, (2005) · Zbl 1401.74196
[29] Nada, SI., The effect of folding on covering spaces, immersions and bifurcation for chaotic manifolds, Int J non-linear sci numer simul, 6, 2, 145-150, (2005) · Zbl 1401.37028
[30] Liao, S., Beyond perturbation, introduction to the homotopy analysis method, (2004), CRC Press Company London · Zbl 1051.76001
[31] Liao, X., Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays, Chaos, solitons & fractals, 23, 857-871, (2005) · Zbl 1076.34087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.