×

zbMATH — the first resource for mathematics

Donaldson theory on non-Kählerian surfaces and class VII surfaces with \(b_2=1\). (English) Zbl 1093.32006
In this very substantial paper it is proved that every compact complex surface \(X\) of class VII (Kodaira dimension kod\((X)=-\infty\) and \(b_1(X)=1\)) contains a compact complex curve. This result finishes the classification problem for surfaces \(X\) of class VII with \(b_2(X)\leq 1\). If \(b_2(X)=0\) then \(X\) is biholomorphically equivalent to a Hopf surface or to an Inoue surface by a theorem of F. A. Bogomolov [Math. USSR, Izv. 10 (1976), 255–269 (1977), translation from Izv. Akad. Nauk SSSR, Ser. Mat. 40, 273–288 (1976; Zbl 0352.32020)], for a complete proof see also J. Li, S.T, Yau and F. Zheng [Commun. Anal. Geom. 2, No. 1, 103–109 (1994; Zbl 0837.53053)] and A. Teleman [Int. J. Math. 5, No. 2, 253–264 (1994; Zbl 0803.53038)]. The classification in the situation \(b_2(X)=1\) and \(X\) containing a curve was given in 1984 by I. Nakamura [Invent. Math. 78, 393–443 (1984; Zbl 0575.14033)].
In the present paper it is shown that if \(b_2(X)=1\), then there exists an effective divisor \(C>0\) on \(X\) such that \(c_1^{\mathbb Q}({\mathcal O}(C))\) equals one of the rational cohomology classes \(\pm c_1^{\mathbb Q}({\mathcal K}),\,\,0,\,\, 2c_1^{\mathbb Q}({\mathcal K})\), where \({\mathcal K}\) denotes the canonical line bundle of \(X\). The idea of the proof is to show that otherwise there would exist a certain moduli space of stable rank 2 bundles on \(X\) which contains a compact Riemann surface \(Y\) with points corresponding to non-filtrable bundles (bundles with no subsheaves of rank 1), and points corresponding to filtrable bundles. This leads at the end to a non-trivial holomorphic map from \(Y\) into some moduli space and to a contradiction to the fact that the algebraic dimension \(a(X)=0\). The proof uses techniques from Donaldson theory, compactness theorems for moduli spaces of stable bundles and the Kobayashi-Hitchin correspondence on surfaces.

MSC:
32J15 Compact complex surfaces
14J15 Moduli, classification: analytic theory; relations with modular forms
57R57 Applications of global analysis to structures on manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Barlet, D.: Majoration du volume des fibres génériques et formes géométriques du théorème d’aplatissement. Séminaire Pierre Lelong-Henri Skoda (Analyse). Lect. Notes Math., vol. 822, pp. 1–17. Springer 1980
[2] Barlet, D.: How to use the cycle cpace in complex geometry. Several Complex Variables MSRI Publications, vol. 37, pp. 25–42, 1999 · Zbl 0962.32016
[3] Bănică, C., Le Potier, J.: Sur l’existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques. J. Reine Angew. Math. 378, 1–31 (1987) · Zbl 0624.32017 · doi:10.1515/crll.1987.378.1
[4] Barth, W., Hulek, K., Peters, Ch., Van de Ven, A.: Compact complex surfaces. Springer 2004 · Zbl 1036.14016
[5] Bogomolov, F.: Classification of surfaces of class VII0 with b2=0. Math. USSR Izv. 10, 255–269 (1976) · Zbl 0352.32020 · doi:10.1070/IM1976v010n02ABEH001688
[6] Bogomolov, F.: Surfaces of class VII0 and affine geometry. Math. USSR Izv. 21, 31–73 (1983) · Zbl 0527.14029 · doi:10.1070/IM1983v021n01ABEH001640
[7] Buchdahl, N.: Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988) · Zbl 0617.32044 · doi:10.1007/BF01450081
[8] Buchdahl, N.: A Nakai-Moishezon criterion for non-Kahler surfaces. Ann. Inst. Fourier 50, 1533–1538 (2000) · Zbl 0964.32014
[9] Dloussky, G., Oeljeklaus, K., Toma, M.: Class VII0 surfaces with b2 curves. Tohoku Math. J., II. Ser. 55, 283–309 (2003) · Zbl 1034.32012 · doi:10.2748/tmj/1113246942
[10] Donaldson, S. K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985) · Zbl 0547.53019 · doi:10.1112/plms/s3-50.1.1
[11] Donaldson, S., Kronheimer, P.: The Geometry of Four-Manifolds. Oxford Univ. Press 1990 · Zbl 0820.57002
[12] Gauduchon, P.: Sur la 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984) · Zbl 0536.53066 · doi:10.1007/BF01455968
[13] Kobayashi, S.: Differential geometry of complex vector bundles. Princeton Univ. Press 1987 · Zbl 0708.53002
[14] Lübke, M., Okonek, C.: Moduli spaces of simple bundles and Hermitian-Einstein connections. Math. Ann. 276, 663–674 (1987) · Zbl 0609.53009 · doi:10.1007/BF01456994
[15] Lübke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. World Scientific Publishing Co. 1995 · Zbl 0849.32020
[16] Lübke, M., Teleman, A.: The universal Kobayashi-Hitchin correspondence on Hermitian surfaces. math.DG/0402341, to appear in Mem. Am. Math. Soc.
[17] Li, J., Yau, S.T.: Hermitian Yang-Mills connections on non-Kähler manifolds, Math. aspects of string theory (San Diego, CA 1986). Adv. Ser. Math. Phys. 1, pp. 560–573. World Scientific Publishing 1987
[18] Li, J., Yau, S.T., Zheng, F.: On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2, 103–109 (1994) · Zbl 0837.53053
[19] Miyajima, K.: Kuranishi families of vector bundles and algebraic description of the moduli space of Einstein-Hermitian connections. Publ. Res. Inst. Math. Sci. 25, 301–320 (1989) · Zbl 0683.32016 · doi:10.2977/prims/1195173613
[20] Nakamura, I.: On surfaces of class VII0 with curves. Invent. Math. 78, 393–443 (1984) · Zbl 0575.14033 · doi:10.1007/BF01388444
[21] Newstead, P.E.: Introduction to moduli problems and orbit spaces. Tata Institute of Fundamental Research on Mathematics and Physics 51. New Delhi: Tata Institute of Fundamental Research 1978 · Zbl 0411.14003
[22] Teleman, A.: Projectively flat surfaces and Bogomolov’s theorem on class VII0-surfaces. Int. J. Math. 5, 253–264 (1994) · Zbl 0803.53038 · doi:10.1142/S0129167X94000152
[23] Teleman, A.: Instantons on class VII surfaces. In preparation · Zbl 1231.14028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.