×

zbMATH — the first resource for mathematics

A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. (English) Zbl 1092.76069
Summary: A phase field model for the mixture of two incompressible fluids is presented in this paper. The model is based on an energetic variational formulation. It consists of a Navier-Stokes system (linear momentum equation) coupled with a Cahn-Hilliard equation (phase field equation) through an extra stress term and the transport term. The extra stress represents the (phase induced) capillary effect for the mixture due to the surface tension. A Fourier-spectral method for the numerical approximation of this system is proposed and analyzed. Numerical results illustrating the robustness and versatility of the model are presented.

MSC:
76T99 Multiphase and multicomponent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd ed., revised and enlarged, with the assistance of T. Ratiu and R. Cushman, Benjamin/Cummings, Advanced Book Program, Reading, MA, 1978.
[2] Alikakos, N.D.; Bates, P.W.; Chen, X.F., Convergence of the cahn – hilliard equation to the hele – shaw model, Arch. rational mech. anal., 128, 165-205, (1994) · Zbl 0828.35105
[3] D.M. Anderson, G.B. McFadden, A diffuse-interface description of internal waves in a near-critical fluid, Phys. Fluids 9 (1997). · Zbl 1185.76467
[4] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, in: Annual Review of Fluid Mechanics, vol. 30, Annual Reviews, Palo Alto, CA, 1998, pp. 139-165. · Zbl 1398.76051
[5] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989 [K. Vogtmann, A. Weinstein, translators, from the 1974 Russian original, corrected reprint of the second (1989) edition].
[6] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1999. · Zbl 0958.76001
[7] A.N. Beris, B.J. Edwards, Thermodynamics of Flow Systems, with Internal Microstructure, Oxford Science Publication, 1994.
[8] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley/Interscience, New York, 1987.
[9] T. Blesgen, A generalization of the Navier-Stokes equations to two phase flow, Preprint, 2000. · Zbl 0974.76086
[10] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. anal., 20, 175-212, (1999) · Zbl 0937.35123
[11] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. fluids, 31, 41-68, (2002) · Zbl 1057.76060
[12] Bronsard, L.; Kohn, R., Motion by Mean curvature as the singular limit of ginzburgh – landau model, J. diff. eqns., 90, 211-237, (1991) · Zbl 0735.35072
[13] Bronsard, L.; Kohn, R., On the slowness of phase boundary motion in one space dimension, Comm. pure appl. math., 43, 983-997, (1990) · Zbl 0761.35044
[14] Caffarelli, L.A.; Muler, N.E., An L∞ bound for solutions of the cahn – hilliard equation, Arch. rational mech. anal., 133, 129-144, (1995) · Zbl 0851.35010
[15] G. Caginalp, X.F. Chen, Phase field equations in the singular limit of sharp interface problems, in: On the Evolution of Phase Boundaries (Minneapolis, MN, 1990-1991), Springer, New York, 1992, pp. 1-27. · Zbl 0760.76094
[16] Cahn, J.W.; Allen, S.M., A microscopic theory for domain wall motion and its experimental verification in fe – al alloy domain growth kinetics, J. phys. colloque, C7, C7-C51, (1978)
[17] Cahn, J.W.; Hillard, J.E., Free energy of a nonuniform system. I. interfacial free energy, J. chem. phys., 28, 258-267, (1958)
[18] P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge, 1995.
[19] Chang, Y.C.; Hou, T.Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. comput. phys., 124, 449-464, (1996) · Zbl 0847.76048
[20] Chen, X.F., Spectrum for the allen – cahn, cahn – hilliard, and phase-field equations for generic interfaces, Comm. partial diff. eqns., 19, 1371-1395, (1994) · Zbl 0811.35098
[21] X.F. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Trans. Am. Math. Soc. 334 (1992). · Zbl 0785.35006
[22] Cliffe, K.A.; Tavener, S.J., Marangoni-Bénard convection with a deformable free surface, J. comput. phys., 145, 193-227, (1998) · Zbl 0924.76101
[23] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993.
[24] I.V. Denisova, V.A. Solonnikov, Solvability of a linearized problem on the motion of a drop in a fluid flow, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 171 (1989). · Zbl 0796.76025
[25] Denny, D.L.; Pego, R.L., Models of low-speed flow for near-critical fluids with gravitational and capillary effects, Quart. appl. math., 58, 103-125, (2000) · Zbl 1032.76059
[26] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford Science Publication, 1986.
[27] Du, Q.; Shen, J.; Guo, B.Y., Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. numer. anal., 39, 735-762, (2001) · Zbl 1007.76057
[28] Dunn, J.E.; Serrin, J., On the thermomechanics of interstitial working, Arch. rational mech. anal., 88, 95-133, (1985) · Zbl 0582.73004
[29] E, W.; Palffy-Muhoray, P., Phase separation in incompressible systems, Phys. rev. E, 55, 3, R3844-R3846, (1997) · Zbl 1110.82304
[30] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Process and Rheology, Butterworths/Heinemann, London, 1991.
[31] Evans, L.C.; Soner, H.M.; Souganidis, P.E., Phase transitions and generalized motion by Mean curvature, Comm. pure appl. math., 45, 1097-1123, (1992) · Zbl 0801.35045
[32] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. · Zbl 0562.35001
[33] Gurtin, M.E.; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. models meth. appl. sci., 6, 815-831, (1996) · Zbl 0857.76008
[34] Hamilton, R.S., The inverse function theorem of Nash and Moser, Bull. am. math. soc. (NS), 7, 65-222, (1982) · Zbl 0499.58003
[35] Hamilton, R.S., Three-manifolds with positive Ricci curvature, J. diff. geom., 17, 255-306, (1982) · Zbl 0504.53034
[36] Jacqmin, D., Calculation of two-phase navier – stokes flows using phase-field modeling, J. comput. phys., 155, 96-127, (1999) · Zbl 0966.76060
[37] V.V. Krotov, A.I. Rusanov, Physicochemical Hydrodynamics of Capillary Systems, Imperial College Press, London, 1999.
[38] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, London, 1969. · Zbl 0184.52603
[39] R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford, 1995.
[40] V. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[41] J. Lighthill, Waves in Fluids, Cambridge, 1978.
[42] Lin, F.H.; Liu, C., Nonparabolic dissipative systems, modeling the flow of liquid crystals, Comm. pure appl. math., XLVIII, 501-537, (1995) · Zbl 0842.35084
[43] Lin, F.H.; Liu, C., Static and dynamic theories of liquid crystals, J. partial diff. eqns., 14, 289-330, (2001) · Zbl 1433.82014
[44] C. Liu, S. Shkoller, Variational phase field model for the mixture of two fluids, Preprint, 2001.
[45] C. Liu, S.J. Tavener, N.J. Walkington, A variational phase field model for Marangoni-Bénard convection with a deformable free surface, Preprint, 2001.
[46] Liu, C.; Walkington, N.J., An Eulerian description of fluids containing visco-hyperelastic particles, Arch. rat. mech. anal., 159, 229-252, (2001) · Zbl 1009.76093
[47] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible cahn – hilliard fluids and topological transitions, R. soc. lond. proc. ser. A math. phys. eng. sci., 454, 2617-2654, (1998) · Zbl 0927.76007
[48] G.B. McFadden, A.A. Wheeler, D.M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities, Physica D 144 (2000). · Zbl 0962.35175
[49] McFadden, G.B.; Wheeler, A.A.; Braun, R.J.; Coriell, S.R.; Sekerka, R.F., Phase-field models for anisotropic interfaces, Phys. rev. E, 48, 3, 2016-2024, (1993) · Zbl 0791.35159
[50] W.W. Mullins, R.F. Sekerka, On the thermodynamics of crystalline solids, J. Chem. Phys. 82 (1985).
[51] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacobi formulations, J. comput. phys., 79, 12-49, (1988) · Zbl 0659.65132
[52] R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, Wiley, New York, 1994.
[53] T. Qian, X.P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Preprint, 2002.
[54] Rey, A.D., Viscoelastic theory for nematic interfaces, Phys. rev. E, 61, 1540-1549, (2000)
[55] Rubinstein, J.; Sternberg, P.; Keller, J.B., Fast reaction, slow diffusion, and curve shortening, SIAM J. appl. math., 49, 116-133, (1989) · Zbl 0701.35012
[56] Schoen, R.; Uhlenbeck, K., A regularity theory for harmonic maps, J. diff. geom., 17, 307-335, (1982) · Zbl 0521.58021
[57] Schoen, R.; Uhlenbeck, K., Regularity of minimizing harmonic maps into the sphere, Invent. math., 78, 89-100, (1984) · Zbl 0555.58011
[58] H.M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, J. Geom. Anal. 7 (1997). · Zbl 0935.35060
[59] H.M. Soner, Ginzburg-Landau equation and motion by mean curvature. II. Development of the initial interface, J. Geom. Anal. 7 (1997). · Zbl 0935.35061
[60] H.M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling [97d:80007], in: Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, Springer, Berlin, 1999, pp. 413-471.
[61] F. Stacy, Physics of the Earth, 2nd ed., Wiley, New York, 1977.
[62] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990. · Zbl 0746.49010
[63] Taylor, J.E.; Cahn, J.W., Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. stat. phys., 77, 183-197, (1994) · Zbl 0844.35044
[64] Taylor, J.E.; Cahn, J.W., Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces, Physica D, 112, 381-411, (1998), (with an appendix by Jason Yunger) · Zbl 0930.35201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.