zbMATH — the first resource for mathematics

Computational methods for form finding and optimization of shells and membranes. (English) Zbl 1092.74032
Summary: Free-form shells optimized for stiffness under given loading and membrane structures act in a pure membrane state of stresses, either because bending is minimized or not even present by definition. Physical experiments as soap films and hanging models have been used since centuries to generate optimal shapes of membranes in tension and shells in compression. The paper presents numerical methods to simulate the physical experiments as well as how they can be merged among each other and with the most general technology of structural optimization. The combined approach represents the combined power of each technique. Several examples illustrate the methods and typical applications.

74P05 Compliance or weight optimization in solid mechanics
74K25 Shells
74K15 Membranes
Full Text: DOI
[1] F. Otto, B. Rasch, Finding Form, Deutscher Werkbund Bayern, Edition A. Menges, 1995.
[2] E. Ramm, Shape finding methods of shells, in: International IASS Symposium on Spatial Structures at the Turn of the Millenium, Copenhagen, 1991, pp. 59-67.
[3] Ramm, E.; Bletzinger, K.-U.; Reitinger, R.; Ramm, E.; Bletzinger, K.-U.; Reitinger, R., Shape optimization of shell structures, IASS bull., Rev. eur. éléments finis, 2, 377-398, (1993) · Zbl 0924.73161
[4] Bletzinger, K.-U.; Ramm, E., Structural optimization and form finding of light weight structures, Comput. struct., 79, 2053-2062, (2001)
[5] Hildebrandt, S.; Tromba, A., Mathematics and optimal form, (1985), Scientific American Library
[6] T. Suzuki, Y. Hangai, Shape analysis of minimal surface by the finite element method, in: International IASS Symposium on Spatial Structures at the Turn of the Millenium, Copenhagen, 1991, pp. 103-110.
[7] Linkwitz, K.; Schek, H.-J., Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen, Ingenieur-archiv., 40, 145-158, (1971)
[8] E. Haug, G.H. Powell, Finite element analysis of nonlinear membrane structures, Report UCSESM 72-7, University of California at Berkeley, 1972.
[9] Haber, R.; Abel, J., Initial equilibrium solution methods for cable reinforced membranes, Comput. methods appl. mech. engrg., 30, 263-284, (1982) · Zbl 0491.73100
[10] Barnes, M., Form and stress engineering of tension structures, Struct. eng. rev., 6, 175-202, (1994)
[11] Lewis, W.J., Tension structures—form and behaviour, (2003), Thomas Telford Ltd London
[12] Maurin, B.; Motro, R., Surface stress density method as a form finding tool for tensile membranes, Engrg. struct., 20, 712-719, (1998)
[13] Motro, R., Int. J. space struct., Tensile structures, vol. 14, (1999), (special issue)
[14] Ishii, K., Membrane structures in Japan, (1995), SPS Publ. Co. Tokyo
[15] Bletzinger, K.-U.; Ramm, E., A general finite element approach to the form finding of tensile structures by the updated reference strategy, Int. J. space struct., 14, 131-146, (1999)
[16] Bletzinger, K.-U.; Wüchner, R., Form finding of anisotropic pre-stressed membrane structures, (), 595-603
[17] Isler, H., Concrete shells derived from experimental shapes, Struct. engrg. int., 3/94, 142-147, (1994)
[18] Haftka, R.T.; Gürdal, Z., Elements of structural optimization, (1991), Kluwer
[19] K.-U. Bletzinger, Form finding and optimization of tensile structures, in: International IASS-IACM Conference on Computational Methods for Shell and Spatial Structures, Chania, Greece, 2000.
[20] L. Schiemann, Formfindung und Formoptimierung von Schalen mit numerischen Hängemodellen und mathematischer Programmierung, Diplomarbeit, Uni Karlsruhe, TU München, 2000.
[21] Chargin, M.K.; Raasch, I.; Bruns, R.; Deuermeyer, D., General shape optimization capability, Finite elements anal. des., 7, 4, 343-354, (1991) · Zbl 0734.73057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.