×

zbMATH — the first resource for mathematics

A Legendre spectral element method for eigenvalues in hydrodynamic stability. (English) Zbl 1092.65065
Summary: A Legendre polynomial-based spectral technique is developed to be applicable to solving eigenvalue problems which arise in linear and nonlinear stability questions in porous media, and other areas of continuum mechanics. The matrices produced in the corresponding generalised eigenvalue problem are sparse, reducing the computational and storage costs, where the superimposition of boundary conditions is not needed due to the structure of the method. Several eigenvalue problems are solved using both the Legendre polynomial-based and Chebyshev tau techniques. In each example, the Legendre polynomial-based spectral technique converges to the required accuracy utilising less polynomials than the Chebyshev tau method, and with much greater computational efficiency.

MSC:
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
76S05 Flows in porous media; filtration; seepage
76E20 Stability and instability of geophysical and astrophysical flows
Software:
ARPACK
PDF BibTeX Cite
Full Text: DOI
References:
[1] Amili, P.; Yortsos, Y.C., Stability of heat pipes in vapor-dominated systems, Int. J. heat mass transfer, 47, 1233-1246, (2004) · Zbl 1106.76369
[2] Brown, B.M.; Marletta, M., Spectral inclusion and spectral exactness for singular non-self-adjoint Hamiltonian systems, Proc. roy. soc. London A, 459, 1987-2009, (2003) · Zbl 1078.34064
[3] Davies, E.B., Pseudospectra: the harmonic oscillator and complex resonances, Proc. roy. soc. London A, 455, 117-139, (1999)
[4] Dongarra, J.J.; Straughan, B.; Walker, D.W., Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems, Appl. numer. math., 22, 399-434, (1996) · Zbl 0867.76025
[5] Drazin, P.G.; Reid, W.H., Hydrodynamic stability, (1981), Cambridge University Press Cambridge · Zbl 0449.76027
[6] Gardner, D.R.; Trogdon, S.A.; Douglass, R.W., A modified tau spectral method that eliminates spurious eigenvalues, J. computat. phys., 80, 137-167, (1989) · Zbl 0661.65084
[7] Golub, G.H.; Van Loan, C.F., Matrix computations, (1996), Johns Hopkins University Press Baltimore, MD · Zbl 0865.65009
[8] Greenberg, L.; Marletta, M., Numerical methods for higher order sturm – liouville problems, J. computat. appl. math., 125, 367-383, (2000) · Zbl 0970.65087
[9] Greenberg, L.; Marletta, M., Numerical solution of non self-adjoint sturm – liouville problems and related systems, SIAM J. numer. anal., 38, 1800-1845, (2001) · Zbl 1001.34020
[10] Greenberg, L.; Marletta, M., The Ekman flow and related problems: spectral theory and numerical analysis, Math. proc. Cambridge philos. soc., 136, 719-764, (2004) · Zbl 1058.34025
[11] Haidvogel, D.B.; Zang, T., The accurate solution of Poisson’s equation by expanding in Chebyshev polynomials, J. comput. phys., 30, 167-180, (1979) · Zbl 0397.65077
[12] Ivansson, S., Compound-matrix Riccati method for solving boundary value problems, Zeit. angew. math. mech., 83, 535-548, (2004) · Zbl 1044.65065
[13] Kirchner, N.P., Computational aspects of the spectral Galerkin FEM for the orr – sommerfield equation, Internat. J. numer. methods fluids, 32, 119-137, (2000) · Zbl 0979.76048
[14] Lehoucq, R.B.; Sorenson, D.C.; Yang, C., ARPACK users’ guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods, (1998), SIAM Philadelphia · Zbl 0901.65021
[15] Nield, D.A., Convection in a porous medium with an inclined temperature gradient: additional results, Internat. J. heat mass transfer, 37, 3021-3025, (1994) · Zbl 0900.76600
[16] Nield, D.A.; Bejan, A., Convection in porous media, (1999), Springer New York · Zbl 0924.76001
[17] Shen, J., Efficient spectral-Galerkin method I. direct solvers of second and fourth order equations using Legendre polynomials, SIAM J. sci. comput., 15, 1489-1505, (1994) · Zbl 0811.65097
[18] Sneddon, I.N., Special functions of mathematical physics and chemistry, (1980), Longman London and New York · Zbl 0446.33001
[19] Straughan, B., The energy method, stability, and nonlinear convection, (2004), Springer New York · Zbl 1032.76001
[20] Straughan, B.; Walker, D.W., Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems, J. computat. phys., 127, 128-141, (1996) · Zbl 0858.76064
[21] J. Tracey, Stability analysis of multi-component convection – diffusion problems, PhD. Thesis, University of Glasgow, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.