×

zbMATH — the first resource for mathematics

Bifurcation from zero of a complete trajectory for nonautonomous logistic PDEs. (English) Zbl 1092.35514

MSC:
35K55 Nonlinear parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B32 Bifurcations in context of PDEs
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cheban D. N., Nonlin. Dyn. Syst. Th. 2 pp 125–
[2] Chepyzhov V. V., American Mathematical Society Colloquium Publications 49, in: Attractors for Equations of Mathematical Physics (2002) · Zbl 0986.35001
[3] DOI: 10.1023/A:1010604112317 · Zbl 1121.37320
[4] DOI: 10.1007/BF02219225 · Zbl 0884.58064
[5] DOI: 10.1006/jdeq.1999.3655 · Zbl 0948.35040
[6] DOI: 10.1137/S0036141099352844 · Zbl 0959.35065
[7] DOI: 10.1006/jdeq.1996.0071 · Zbl 0860.35085
[8] Hess P., Pitman Research Notes in Mathematics 247, in: Periodic-Parabolic Boundary Value Problems and Positivity (1991)
[9] DOI: 10.1088/0951-7715/15/3/322 · Zbl 1004.37032
[10] Langa J. A., Electron. J. Diff. Eqns. 72 pp 1–
[11] DOI: 10.1016/S0022-0396(02)00173-0 · Zbl 1027.35017
[12] DOI: 10.1006/jdeq.1996.0070 · Zbl 0853.35078
[13] López-Gómez J., Electron. J. Diff. Eqns. 5 pp 135–
[14] Mora X., Trans. Amer. Math. Soc. 278 pp 21–
[15] DOI: 10.1007/978-1-4684-0152-3
[16] Walter W., Disc. Cont. Dyn. Syst. 8 pp 51–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.