×

A micro-macro approach to rubber-like materials. I: The non-affine micro-sphere model of rubber elasticity. (English) Zbl 1091.74008

Summary: The contribution presents a new micro-mechanically based network model for the description of the elastic response of rubbery polymers at large strains and considers details of its numerical implementation. The approach models a rubber-like material based on a micro-structure that can be symbolized by a micro-sphere where the surface represents a continuous distribution of chain orientations in space. Core of the model is a new two-dimensional constitutive setting of the micro-mechanical response of a single polymer chain in a constrained environment defined by two micro-kinematic variables: the stretch of the chain, and the contraction of the cross-section of a micro-tube that contains the chain. The second key feature is a new non-affine micro-to-macro transition that defines the three-dimensional overall response of the polymer network based on a characteristic homogenization procedure of micro-variables defined on the micro-sphere of space orientations. It determines a stretch fluctuation field on the micro-sphere by a principle of minimum averaged free energy and links the two micro-kinematic variables in a non-affine format to the line-stretch and the area-stretch of the macro-continuum. Hence, the new model describes two superimposed contributions resulting from free chain motions and their topological constraints in an attractive dual geometric structure on both the micro- and the macro-level. Averaging operations on the micro-sphere are directly evaluated by an efficient numerical integration scheme. The overall model contains five effective material parameters obtained from the single chain statistics and properties of the network with clearly identifiable relationships to characteristic phenomena observed in stress-strain experiments. The approach advances features of the affine full network and the eight chain models by a substantial improvement of their modeling capacity. The excellent predictive performance is illustrated by comparative studies with previously developed network models and by fitting of various available experimental data of homogeneous and non-homogeneous tests.

MSC:

74B20 Nonlinear elasticity
74A60 Micromechanical theories
74Q15 Effective constitutive equations in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412 (1993) · Zbl 1355.74020
[2] Bažant, Z. P.; Oh, B. H., Efficient numerical integration on the surface of a sphere, Z. Anegw. Math. Mech, 66, 37-49 (1986) · Zbl 0597.65016
[3] Boyce, M. C., Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elastictiy, Rubber Chem. Technol, 69, 781-785 (1996)
[4] Boyce, M. C.; Arruda, E. M., Constitutive models of rubber elasticitya review, Rubber Chem. Technol, 73, 504-523 (2000)
[5] Cohen, A., A padé approximant to the inverse Langevin function, Rheol. Acta, 30, 270-273 (1991)
[6] Deam, R. T.; Edwards, S. F., The theory of rubber elasticity, Philos. Trans. R. Soc. London A, 280, 317-353 (1976) · Zbl 0328.73033
[7] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics (1986), Clarendon Press: Clarendon Press Oxford
[8] Doyle, T.C., Ericksen, J.L., 1956. Nonlinear elasticity. In: Dryden, H.L., von Kármán, Th. (Eds.), Advances in Applied Mechanics, Vol. 4. Academic Press, New York, pp. 53-116.; Doyle, T.C., Ericksen, J.L., 1956. Nonlinear elasticity. In: Dryden, H.L., von Kármán, Th. (Eds.), Advances in Applied Mechanics, Vol. 4. Academic Press, New York, pp. 53-116.
[9] Edwards, S. F.; Vilgis, T. A., The tube model theory of rubber elasticity, Rep. Prog. Phys, 51, 243-297 (1988)
[10] Erman, B.; Flory, P. J., Theory of elasticity of polymer networks. II. The effect of geometric constraints on junctions, J. Chem. Phys, 68, 5363-5369 (1978)
[11] Flory, P. J., Theory of elasticity of polymer networks. 3, Proc. R. Soc. London, Ser. A, 351, 351-380 (1976)
[12] Flory, P. J., Theory of elasticity of polymer networks. The effect of local constraints on junctions, J. Chem. Phys, 66, 5720-5729 (1977)
[13] Flory, P. J., Statistical Mechanics of Chain Molecules (1989), Carl Hanser Verlag: Carl Hanser Verlag Munich
[14] Flory, P. J.; Erman, B., Theory of elasticity of polymer networks. 3, Macromolecules, 15, 800-806 (1982)
[15] Flory, P. J.; Rehner, J., Statistical mechanics of cross-linked polymer networksI. Rubberlike elasticity, J. Chem. Phys, 11, 512-520 (1943)
[16] Gent, A. N., A new constitutive relation for rubber, Rubber Chem. Technol, 69, 59-61 (1996)
[17] Heinrich, G.; Kaliske, M., Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity, Comput. Theor. Polym. Sci, 7, 227-241 (1997)
[18] Heinrich, G.; Straube, E., On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions, I. The polymer network case, Acta Polym, 34, 589-594 (1983)
[19] Heinrich, G.; Straube, E., On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions, II. Polymer melts and concentrated solutions, Acta Polym, 35, 115-119 (1984)
[20] Heinrich, G.; Straube, E.; Helmis, G., Rubber elasticity of polymer networkstheories, Adv. Polym. Sci, 85, 33-87 (1988)
[21] James, H. M.; Guth, E., Theory of elastic properties of rubber, J. Chem. Phys, 11, 455-481 (1943)
[22] James, A. G.; Green, A.; Simpson, G. M., Strain energy functions of rubber. I. Characterization of gum vulcanizates, J. Appl. Polym. Sci, 19, 2033-2058 (1975)
[23] Kaliske, M.; Heinrich, G., An extended tube-model for rubber elasticitystatistical-mechanical theory and finite element implementation, Rubber Chem. Technol, 72, 602-632 (1998)
[24] Kuhn, W., Über die Gestalt fadenförmiger Moleküle in Lösungen, Kolloid-Z, 68, 2-15 (1934)
[25] Kuhn, W., Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe, Kolloid-Z, 76, 258-271 (1936)
[26] Kuhn, W.; Grün, F., Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe, Kolloid-Z, 101, 248-271 (1942)
[27] Lulei, F., Miehe, C., 2001. A physically—based constitutive model for the finite viscoelastic deformations in rubbery polymers based on a directly evaluated micro-macro transition. In: Besdo, D., Schuster, R.H. Ihlemann, J. (Eds.), Constitutive Models for Rubber II. Balkema Publ., Lisse. pp. 117-125.; Lulei, F., Miehe, C., 2001. A physically—based constitutive model for the finite viscoelastic deformations in rubbery polymers based on a directly evaluated micro-macro transition. In: Besdo, D., Schuster, R.H. Ihlemann, J. (Eds.), Constitutive Models for Rubber II. Balkema Publ., Lisse. pp. 117-125.
[28] Mark, J. E.; Erman, B., Rubberlike Elasticity A Molecular Primer (1988), Wiley: Wiley New York
[29] Marsden, J. E.; Hughes, T. J.R., Mathematical foundations of elasticity (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0545.73031
[30] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Methods Eng, 37, 1981-2004 (1994) · Zbl 0804.73067
[31] Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity, Comput. Methods Appl. Mech. Eng, 134, 223-240 (1996) · Zbl 0892.73012
[32] Miehe, C., A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric, Int. J. Solids Struct, 35, 3859-3897 (1998) · Zbl 0935.74022
[33] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Eng, 192, 559-591 (2003) · Zbl 1091.74530
[34] Miehe, C.; Keck, J., Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, 48, 323-365 (2000) · Zbl 0998.74014
[35] Miehe, C.; Schotte, J.; Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals, J. Mech. Phys. Solids, 50, 2123-2167 (2002) · Zbl 1151.74403
[36] Mooney, M., A theory of large elastic deformation, J. Appl. Polym. Sci, 11, 582-592 (1940) · JFM 66.1021.04
[37] Ogden, R. W., Large deformation isotropic elastictiyon the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. London, Ser. A, 326, 565-584 (1972) · Zbl 0257.73034
[38] Ogden, R. W., Non-linear elastic deformations (1984), Ellis Horwood: Ellis Horwood Chichester · Zbl 0541.73044
[39] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech, 34, 171-303 (1998) · Zbl 0889.73049
[40] Rivlin, R. S.; Saunders, D. W., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London Ser. A, 243, 251-288 (1950) · Zbl 0042.42505
[41] Ronca, G.; Allegra, G., An approach to rubber elasticity with internal constraints, J. Chem. Phys, 63, 4990-4997 (1975)
[42] Simó, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng, 85, 273-310 (1991) · Zbl 0764.73104
[43] Straube, E.; Urban, V.; Pyckhout-Hinzen, W.; Richter, D., SANS investigations of topological constraints and microscopic deformations in rubberelastic networks, Macromolecules, 27, 7681-7688 (1994)
[44] Straube, E.; Urban, V.; Pyckhout-Hinzen, W.; Richter, D.; Glinka, C. J., Small-angle neutron scattering investigation of topological constraints and tube deformation in networks, Phys. Rev. Lett, 74, 4464-4467 (1995)
[45] Treloar, L. R.G., Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc, 40, 59-70 (1944)
[46] Treloar, L. R.G., The elastictiy of a network of long-chain molecules.—III, Trans. Faraday Soc, 42, 83-94 (1946) · Zbl 0063.07846
[47] Treloar, L. R.G., The photoelastic properties of short-chain molecular networks, Trans. Faraday Soc, 50, 881-896 (1954)
[48] Treloar, L. R.G., The Physics of Rubber Elasticity (1975), Clarendon Press: Clarendon Press Oxford · Zbl 0347.73042
[49] Treloar, L. R.G.; Riding, G., A non-Gaussian theory of rubber in biaxial strain. I.Mechanical properties, Proc. R. Soc. London, Ser. A, 369, 261-280 (1979) · Zbl 1355.74022
[50] van den Bogert, P. A.J.; de Borst, R., On the behavior of rubberlike materials in compression and shear, Arch. Appl. Mech, 64, 136-146 (1994) · Zbl 0800.73035
[51] Vilgis, T. A.; Erman, B., Comparison of the constrained junction and the slip-link models of rubber elasticity, Macromolecules, 26, 6657-6659 (1993)
[52] Wang, M. C.; Guth, E., Statistical theory of networks of non-Gaussian flexible chains, J. Chem. Phys, 20, 1144-1157 (1952)
[53] Wu, P. D.; van der Giessen, E., On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427-456 (1993) · Zbl 0825.73103
[54] Yeoh, O. H., Some forms of the strain energy function for rubber, Rubber Chem. Technol, 66, 754-771 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.