×

zbMATH — the first resource for mathematics

Local partial-likelihood estimation for lifetime data. (English) Zbl 1091.62099
Summary: This paper considers a proportional hazards model, which allows one to examine the extent to which covariates interact nonlinearly with an exposure variable, for analysis of lifetime data. A local partial-likelihood technique is proposed to estimate nonlinear interactions. Asymptotic normality of the proposed estimator is established. The baseline hazard function, the bias and the variance of the local likelihood estimator are consistently estimated. In addition, a one-step local partial-likelihood estimator is presented to facilitate the computation of the proposed procedure and is demonstrated to be as efficient as the fully iterated local partial-likelihood estimator. Furthermore, a penalized local likelihood estimator is proposed to select important risk variables in the model. Numerical examples are used to illustrate the effectiveness of the proposed procedures.

MSC:
62N02 Estimation in survival analysis and censored data
62G20 Asymptotic properties of nonparametric inference
62G05 Nonparametric estimation
62N01 Censored data models
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes . Springer, New York. · Zbl 0769.62061
[2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Statist. 10 1100–1120. JSTOR: · Zbl 0526.62026 · doi:10.1214/aos/1176345976 · links.jstor.org
[3] Antoniadis, A. and Fan, J. (2001). Regularization of wavelet approximations (with discussion). J. Amer. Statist. Assoc. 96 939–967. · Zbl 1072.62561 · doi:10.1198/016214501753208942
[4] Bjerve, S., Doksum, K. A. and Yandell, B. S. (1985). Uniform confidence bounds for regression based on a simple moving average. Scand. J. Statist. 12 159–169. · Zbl 0602.62034
[5] Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373–384. · Zbl 0862.62059 · doi:10.2307/1269730
[6] Breslow, N. (1972). Discussion of “Regression models and life-tables,” by D. R. Cox. J. Roy. Statist. Soc. Ser. B 34 216–217.
[7] Brumback, B. and Rice, J. A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion). J. Amer. Statist. Assoc. 93 961–994. · Zbl 1064.62515 · doi:10.2307/2669837
[8] Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. J. Amer. Statist. Assoc. 95 888–902. · Zbl 0999.62052 · doi:10.2307/2669472
[9] Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient regression models for nonlinear time series. J. Amer. Statist. Assoc. 95 941–956. · Zbl 0996.62078 · doi:10.2307/2669476
[10] Cai, Z. and Sun, Y. (2003). L ocal linear estimation for time-dependent coefficients in Cox’s regression models. Scand. J. Statist. 30 93–111. · Zbl 1034.62096 · doi:10.1111/1467-9469.00320
[11] Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. J. Amer. Statist. Assoc. 92 477–489. · Zbl 0890.62053 · doi:10.2307/2965697
[12] Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local estimating equations. J. Amer. Statist. Assoc. 93 214–227. · Zbl 0910.62033 · doi:10.2307/2669618
[13] Chen, R. and Tsay, R. S. (1993). Functional-coefficient autoregressive models. J. Amer. Statist. Assoc. 88 298–308. · Zbl 0776.62066 · doi:10.2307/2290725
[14] Cleveland, W. S., Grosse, E. and Shyu, W. M. (1992). Local regression models. In Statistical Models in S (J. M. Chambers and T. J. Hastie, eds.) 309–376. Wadsworth and Brooks/Cole, Pacific Grove, CA.
[15] Fan, J. and Chen, J. (1999). One-step local quasi-likelihood estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 927–943. · Zbl 0940.62039 · doi:10.1111/1467-9868.00211
[16] Fan, J., Gijbels, I. and King, M. (1997). Local likelihood and local partial likelihood in hazard regression. Ann. Statist. 25 1661–1690. · Zbl 0890.62023 · doi:10.1214/aos/1031594736
[17] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348–1360. · Zbl 1073.62547 · doi:10.1198/016214501753382273
[18] Fan, J. and Li, R. (2002). Variable selection for Cox’s proportional hazards model and frailty model. Ann. Statist. 30 74–99. · Zbl 1012.62106 · doi:10.1214/aos/1015362185
[19] Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27 1491–1518. · Zbl 0977.62039 · doi:10.1214/aos/1017939139
[20] Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis . Wiley, New York. · Zbl 0727.62096
[21] Gamerman, D. (1998). Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85 215–227. · Zbl 0904.62083 · doi:10.1093/biomet/85.1.215 · www3.oup.co.uk
[22] Härdle, W. (1989). Asymptotic maximal deviation of \(M\)-smoothers. J. Multivariate Anal. 29 163–179. · Zbl 0667.62028 · doi:10.1016/0047-259X(89)90022-5
[23] Hastie, T. and Tibshirani, R. (1990). Exploring the nature of covariate effects in the proportional hazards model. Biometrics 46 1005–1016.
[24] Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient models (with discussion). J. Roy. Statist. Soc. Ser. B. 55 757–796. · Zbl 0796.62060
[25] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85 809–822. · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809 · www3.oup.co.uk
[26] Johnston, G. J. (1982). Probabilities of maximal deviations for nonparametric regression function estimates. J. Multivariate Anal. 12 402–414. · Zbl 0497.62038 · doi:10.1016/0047-259X(82)90074-4
[27] Martinussen, T., Scheike, T. H. and Skovgaard, I. M. (2000). Efficient estimation of fixed and time-varying covariate effects in multiplicative intensity models. Unpublished manuscript. · Zbl 1017.62094
[28] Marzec, L. and Marzec, P. (1997). On fitting Cox’s regression model with time-dependent coefficients. Biometrika 84 901–908. · Zbl 1089.62509 · doi:10.1093/biomet/84.4.901
[29] Morris, C. N., Norton, E. C. and Zhou, X. H. (1994). Parametric duration analysis of nursing home usage. In Case Studies in Biometry (N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest and J. Greenhouse, eds.) 231–248. Wiley, New York.
[30] Murphy, S. A. (1993). Testing for a time dependent coefficient in Cox’s regression model. Scand. J. Statist. 20 35–50. · Zbl 0782.62053
[31] Murphy, S. A. and Sen, P. K. (1991). Time-dependent coefficients in a Cox-type regression model. Stochastic Process. Appl. 39 153–180. · Zbl 0754.62069 · doi:10.1016/0304-4149(91)90039-F
[32] Tian, L., Zucker, D. and Wei, L. J. (2002). On the Cox model with time-varying regression coefficients. Working paper, Dept. Biostatistics, Harvard Univ. · Zbl 1117.62435
[33] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B. 58 267–288. · Zbl 0850.62538
[34] Tibshirani, R. J. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16 385–395.
[35] Wu, C. O. and Chiang, C.-T. (2000). Kernel smoothing on varying coefficient models with longitudinal dependent variable. Statist. Sinica 10 433–456. · Zbl 0945.62047
[36] Wu, C. O., Chiang, C.-T. and Hoover, D. R. (1998). Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Amer. Statist. Assoc. 93 1388–1402. · Zbl 1064.62523 · doi:10.2307/2670054
[37] Zucker, D. M. and Karr, A. F. (1990). Nonparametric survival analysis with time-dependent covariate effects: A penalized partial likelihood approach. Ann. Statist. 18 329–353. JSTOR: · Zbl 0708.62035 · doi:10.1214/aos/1176347503 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.