zbMATH — the first resource for mathematics

An alternative mathematical foundation for statistics. (English) Zbl 1090.60503
Summary: We use a version of non-standard analysis with a double scale of order of magnitude to develop an alternative foundation for statistics. The corresponding theory is intermediate between statistics and probability theory and we view it as a link between frequency statistics and probability.

60A99 Foundations of probability theory
03H10 Other applications of nonstandard models (economics, physics, etc.)
Full Text: DOI
[1] Callot, J. L.: Trois leçons d’Analyse infinitésimales, In: J. M. Salanskis (ed), le labyrinthe du continu, Springer France, Paris, 1992. · Zbl 0769.03035
[2] de Finetti, B.: Teoria delle Probabilità, Einaudi, 1970.
[3] Diener, F. and Diener, M. (eds.): Nonstandard Analysis in Practice, Springer, Berlin Heidelberg New York, 1995. · Zbl 0848.26015
[4] Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. I, II, Wiley Series in Probability, 1968. · Zbl 0155.23101
[5] Lutz, R.: Rêveries Infinitésimales, La Gaz. des math. 34 (1987).
[6] Lutz, R.: La Force des Théories Infinitésimales Faibles, In: J. M. Salanskis (ed), le labyrinthe du continu, Springer France, Paris, 1992.
[7] Lutz, R. and Albuquerque, L. G.: Modern infinitesimals as tools to mach intuitive and formal reasonning in analysis, Synthese 134 (2003), 1–2. · Zbl 1023.03062 · doi:10.1023/A:1022152117818
[8] Lutz, R. and Goze, M.: Nonstandard analysis: A practical guide with applications, Springer, Lect. Notes Math. 881 (1981). · Zbl 0506.03021
[9] Musio, M.: Linking Statistics and Probability: An Intermediate Theory, Preprint Université de Haute Alsace, 2003.
[10] Musio, M. and Lutz, R.: A finitisation of the finitely additive probability theory using non standard analysis, Rend. Accad. Naz. Sci. Detta XL, 112, XVIII, I, (1994), 117–132. · Zbl 0831.60004
[11] Nelson, E.: Internal set theory, Bull. Am. Math. Soc. 83 (1977), 6. · Zbl 0373.02040 · doi:10.1090/S0002-9904-1977-14398-X
[12] Nelson, E.: Radically Elementary Probability Theory, Ann. Math. Studies 117, Princeton U.P., New Jersey., 1987. · Zbl 0651.60001
[13] Peraire, Y.: Théorie Relative des Ensemble Internes, Osaka J. Math. 29 (1995), 2.
[14] Robinson, A.: Non-Standard Analysis, North-Holland, Amsterdam, 1966. · Zbl 0151.00803
[15] Salanskis, J. M.: Le Constructivisme Non Standard, Presses Universitaires du Septentrion coll, Histoire des Sciences, Lille, 1999.
[16] Van den Berg, I.: Non-Standard Asymptotic Analysis, Lecture notes in Math. no. 1249, Springer, 1987. · Zbl 0633.41001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.