×

zbMATH — the first resource for mathematics

Covariate adjusted correlation analysis via varying coefficient models. (English) Zbl 1089.62068
Actual variables \((Y,X)\) are observed after being multiplied by smooth unknown functions \(\psi\) and \(\varphi\) of the confounder \(U\), leading to the observations \((U_i,\tilde Y_i=\psi(U_i)Y_i,\tilde X_i=\varphi(U_i)X_i)\) with identifiability conditions \(E\varphi(U)=E\psi(U)=1\). (\(U\) is independent of \(X\) and \(Y\)). The authors propose a cadcor estimator for \(\text{corr}\,(X,Y)\) based on the relation \(\text{corr}\,(X,Y)=\text{sign}\,(\gamma)\sqrt{\gamma\eta}\), where \(\gamma\) and \(\eta\) are linear regression coefficients for \(Y\) by \(X\) and \(X\) by \(Y\), respectively. For the observed data the estimation of \(\eta\) and \(\gamma\) leads to the multiple varying coefficient model. The asymptotic normality of the obtained estimator is demonstrated, and an estimate for the asymptotic variance is proposed. Application to Boston house price data and results of simulation studies are presented.

MSC:
62H20 Measures of association (correlation, canonical correlation, etc.)
62J05 Linear regression; mixed models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cai Z., J. Amer. Statist. Assoc. 95 pp 888– (2000)
[2] DOI: 10.1198/016214501753168280 · Zbl 1018.62034 · doi:10.1198/016214501753168280
[3] DOI: 10.1016/0095-0696(78)90006-2 · Zbl 0375.90023 · doi:10.1016/0095-0696(78)90006-2
[4] Hastie T., J. Roy. Statist. Soc. B 55 pp 757– (1993)
[5] DOI: 10.1093/biomet/85.4.809 · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809
[6] DOI: 10.1016/0047-259X(79)90093-9 · Zbl 0416.62051 · doi:10.1016/0047-259X(79)90093-9
[7] McLeish D. L., Ann. Probab. 2 pp 620– (1974)
[8] Pearson K., Karl Pearson’s early statistical papers pp 113– (1896)
[9] Senturk D., Biometrika (2005)
[10] D. Senturk, and H. G. Muller (2005 ). Inference for covariate adjusted regression via varying coefficient models . In revision inAnnals of Statistics.
[11] Wu C. O., Statist Sinica 10 pp 433– (2000)
[12] DOI: 10.1006/jmva.2001.2012 · Zbl 0995.62038 · doi:10.1006/jmva.2001.2012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.