zbMATH — the first resource for mathematics

Petri net modules in the transformation-based component framework. (English) Zbl 1088.68129
Summary: Component-based software engineering needs to be backed by thorough formal concepts and modeling techniques. This paper combines two concepts introduced independently by the two authors in previous papers. On one hand, the concept of Petri net modules introduced at IDPT 2002 by J. Padberg [“Petri net modules”, J. Integrated Design Process Technol. 6, 105–120 (2002)], and on the other hand a generic component framework for system modeling introduced at FASE 2002 by H. Ehrig, F. Orejas, B. Braatz, M. Klein and M. Piirainen [“A generic component framework for system modeling”, in: Proceedings of FASE ’02, Lect. Notes Comput. Sci. 2306, 33–48 (2002; Zbl 1059.68543)]. First we develop a categorical formalization of the transformation based approach to components that is based on pushouts. This is the frame in which we show that Petri net modules can be considered as an instantiation of the generic component framework. This allows applying the transformation based semantics and compositionality result of the generic framework to Petri net modules. In addition to general Petri net modules we introduce Petri net modules preserving safety properties which can be considered as another instantiation of pushout based formalization of the generic framework.

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Full Text: DOI
[1] Battiston, E.; Cindio, F.D.; Mauri, G., OBJSA nets: a class of high-level nets having objects as domains, (), 20-43 · Zbl 0668.68068
[2] Battiston, E.; Cindio, F.D.; Mauri, G.; Rapanotti, L., Morphisms and minimal models for OBJSA nets, (), 455-476
[3] Broy, M.; Streicher, T., Modular functional modelling of Petri nets with individual tokens, ()
[4] Buchholz, P., Hierarchical high level Petri nets for complex system analysis, (), 119-138
[5] Christinsen, S.; Hansen, N., Coloured Petri nets extended with channels for synchronous communication, (), 159-178
[6] Deiters, W.; Gruhn, V., The {\scfunsoft} net approach to software process management, International journal on software engineering and knowledge engineering, 4, 2, 229-256, (1994)
[7] Desel, J.; Juhás, G.; Lorenz, R., Process semantics of Petri nets over partial algebra, (), 146-165 · Zbl 0986.68089
[8] Ehrig, H.; Habel, A.; Kreowski, H.-J.; Parisi-Presicce, F., From graph grammars to high level replacement systems, (), 269-291 · Zbl 0765.68088
[9] Ehrig, H.; Mahr, B., Fundamentals of algebraic specification. 2. module specifications and constraints, EATCS monographs on theoretical computer science, vol. 21, (1990), Springer-Verlag Berlin · Zbl 0759.68013
[10] H. Ehrig, F. Orejas, 2001. A generic component concept for integrated data type and process specification techniques, Tech. Rep. 2001/12, Technische Universität Berlin, FB Informatik.
[11] Ehrig, H.; Orejas, F.; Braatz, B.; Klein, M.; Piirainen, M., A generic component concept for system modeling, () · Zbl 1059.68543
[12] H. Ehrig, J. Padberg, F. Orejas, B. Braatz, M. Klein, S. Perez, E. Pino, A generic framework for connector architectures based on components and transformations, in: Proceedings of FESCA 2004, Satellite Event of ETAPS 2004, 2004.
[13] Fehling, R., A concept of hierarchical Petri nets with building blocks, (), 148-168
[14] M. Gajewsky, K. Hoffmann, J. Padberg, Place preserving and transition gluing morphisms in rule-based refinement of place/transition systems, Tech. Rep. 99-14, Technical University Berlin, 1999.
[15] Gruhn, V.; Thiel, A., Komponentenmodelle: DCOM, javabeans, enterprisejavabeans, CORBA, (2000), Addison-Wesley
[16] He, X., A formal definition of hierarchical predicate transition nets, (), 212-229
[17] Jensen, K., Coloured Petri nets. basic concepts, analysis methods and practical use, EATCS monographs in theoretical computer science edition, Basic concepts, vol. 1, (1992), Springer-Verlag
[18] E. Kindler, Modularer Entwurf verteilter Systeme mit Petrinetzen, Ph.D. thesis, Technische Universität München, Institut für Informatik, 1995.
[19] S. Mann, B. Borusan, H. Ehrig, M. Große-Rhode, R. Mackenthun, A. Sünbül, H. Weber, Towards a component concept for continuous software engineering, Tech. Rep. 55/00, FhG-ISST, 2000.
[20] Meseguer, J.; Montanari, U., Petri nets are monoids, Information and computation, 88, 2, 105-155, (1990) · Zbl 0711.68077
[21] J. Padberg, Place/transition net modules: transfer from algebraic specification modules, Tech. Rep. TR 01-3, Technical University Berlin, 2001.
[22] Padberg, J., Petri net modules, Journal on integrated design and process technology, 6, 4, 105-120, (2002)
[23] J. Padberg, Safety properties in Petri net modules, in: Proceedings of 7th World Conference on Integrated Design and Process Technology (IDPT 2003), Society for Process Technology, CD-ROM, 2003.
[24] J. Padberg, M. Buder, Structuring with Petri net modules: a case study, Tech. Rep. TR 01-4, Technical University Berlin, 2001.
[25] Padberg, J.; Ehrig, H.; Ribeiro, L., Algebraic high-level net transformation systems, Mathematical structures in computer science, 5, 217-256, (1995) · Zbl 0839.68068
[26] Padberg, J.; Urbášek, M., Rule-based refinement of Petri nets: a survey, () · Zbl 1283.68251
[27] Sibertin-Blanc, C., Cooperative nets, (), 471-490
[28] M. Simeoni, A categorical approach to modularization of graph transformation systems using refinements, Ph.D. thesis, Università Roma La Sapienza, 1999.
[29] Szyperski, C., Component software—beyond object-oriented programming, (1997), Addison-Wesley
[30] Weber, H., Continuous engineering of communication and software infrastructures, Lecture notes in computer science, vol. 1577, (1999), Springer-Verlag, pp. 22-29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.