×

zbMATH — the first resource for mathematics

Independence and conditional possibility for strictly monotone triangular norms. (English) Zbl 1088.60003
Summary: In the literature there are different definitions of conditional possibility. Starting from a general axiomatic definition, we propose a definition of independence for \(\odot\)-conditional possibility, in the case that \(\odot\) is a strictly monotone triangular norm. We study its main properties to compare it to other definitions introduced in possibility theory. Then, we show that the controversial aspects related to logical dependencies (structural zeros) can be circumvented. Moreover, a set of properties (the well-known graphoid properties) has been considered to be tested, allowing us to compare the proposed definition to the independence notions given in the context of other uncertainty formalisms.

MSC:
60A99 Foundations of probability theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Cooman, Int J Gen Syst 25 pp 353– (1997)
[2] , , . An ordinal view of independence with application to plausible reasoning. In: Lopez de Manteres R, Poole D, editors. Proc 10th Conf on Uncertainty in Artificial Intelligence, Seattle, Washington; 1994. pp 195–203.
[3] Zadeh, Fuzzy Set Syst 1 pp 3– (1978)
[4] Hisdal, Fuzzy Set Syst 1 pp 283– (1978)
[5] Bouchon-Meunier, Ann Math Artif Intell 35 pp 107– (2002)
[6] . Probabilistic logic in a coherent setting. Trends in Logic, vol 15. Dordrecht/Boston/London: Kluwer; 2002. · doi:10.1007/978-94-010-0474-9
[7] Sull’impostazione assiomatica del calcolo delle probabilit√°. Ann Univ di Trieste 1949;19:29–81. (English translation in: Probability, induction, statistics, Ch. 5. London: Wiley; 1972.)
[8] . Zero probabilities in stochastical independence. In: , , editors. Information, Uncertainty, and Fusion (selected papers from IPMU’98). Dordrecht: Kluwer; 2000. pp 185–196. · doi:10.1007/978-1-4615-5209-3_14
[9] Ben Amor, Int J Uncert Fuzziness Know Base Syst 10 pp 117– (2002) · Zbl 1084.68126 · doi:10.1142/S0218488502001387
[10] , . Expressing independence in a possibilistic framework and its application to default reasoning. In: Cohn AG, editor. 11th Eur Conf Artificial Intelligence. Amsterdam: Wiley; 1994. pp 150–154.
[11] de Campos, Fuzzy Set Syst 103 pp 127– (1999)
[12] , , . Qualitative relevance and independence: A roadmap. Int Joint Conf on Artificial Intelligence, Nagoya, Japan; 1997. pp 62–67.
[13] Conditional independence in possibility theory. In: Lopez de Mantaras R, Poole D, editors. Proc 10th Conf on Uncertainty in Artificial Intelligence. San Matteo, CA: Morgan and Kaufmann; 1994. pp 221–226.
[14] . Decision making and medical care. Amsterdam: North-Holland; 1976.
[15] Hill, Stat Sci 8 pp 258– (1993)
[16] Dawid, J Roy Stat Soc B 41 pp 1– (1979)
[17] Vejnarov√°, Int J Uncert Fuzziness Knowl Base Syst 8 pp 253– (2000) · Zbl 1113.68536 · doi:10.1142/S0218488500000186
[18] Vantaggi, Ann Math Artif Intell 32 pp 287– (2001)
[19] Graphical models. Oxford: Clarendon Press; 1996. · Zbl 0907.62001
[20] Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco, CA: Morgan Kaufmann; 1988.
[21] Studeny, Ann Stat 26 pp 1434– (1998)
[22] Vantaggi, Int J Approx Reason 29 pp 291– (2002)
[23] , . Triangular norms. Dordrecht: Kluwer; 2000. 385 p. · Zbl 0972.03002 · doi:10.1007/978-94-015-9540-7
[24] De Baets, Fuzzy Set Syst 106 pp 221– (1999)
[25] . Possibility theory. New York: Plenum Press; 1988. · doi:10.1007/978-1-4684-5287-7
[26] de Cooman, Int J Gen Syst 25 pp 325– (1997)
[27] Dempster, Ann Math Stat 38 pp 325– (1967)
[28] Coletti, Ann Math and Artif Intell 32 pp 373– (2001)
[29] A mathematical theory of evidence. Princeton, NJ: Princeton University Press; 1976. · Zbl 0359.62002
[30] , . Conditional possibility and necessity. In: , , , editors. Technologies for constructing intelligent systems (selected papers from IPMU 2000). Berlin: Springer-Verlag; 2002. pp 59–71. · doi:10.1007/978-3-7908-1796-6_5
[31] . Independence in conditional possibility theory. Proc 10th Int Conf on IPMU 2004, Italy; 2004. pp 849–856.
[32] Formal properties of conditional independence in different calculi of AI. In: , , editors. Symbolic and quantitative approaches to reasoning and uncertainty. Berlin: Springer-Verlag; 1993. pp 341–348.
[33] Vantaggi, Int J Uncert Fuzziness Knowl Base Syst 11 pp 545– (2003)
[34] Coletti, Ann Math Artif Intell 35 pp 151– (2002)
[35] , . Decomposition of large systems and independence structures. In: Proc Second European Congress on System Science, Prague; 1993. pp 891–898. · Zbl 0819.73041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.