×

zbMATH — the first resource for mathematics

Distributed Lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid-structure interactions. (English) Zbl 1087.76543
Summary: A new implementation of the lattice Boltzmann method (LBM) for fluid-structure interactions is presented. The idea of the distributed-Lagrange-multiplier/fictitious-domain method (DLM/FD) is introduced in the framework of the lattice Boltzmann algorithm. This implementation employs a fixed mesh for the solution of the fluid problem and a Lagrangian formulation for the solid problem. The main advantage of the method is that the re-meshing procedure normally required in the ALE method is circumvented. Numerical examples are provided to verify the algorithm and illustrate the capacity of the method to deal with the fluid/elastic-solid interactions.

MSC:
76M28 Particle methods and lattice-gas methods
PDF BibTeX Cite
Full Text: DOI
References:
[1] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. rev. fluid mech., 30, 329, (1998) · Zbl 1398.76180
[2] Nourgaliev, R.R.; Dinh, T.N.; Theofanous, T.G.; Joseph, D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. multiphase flow, 29, 117, (2003) · Zbl 1136.76594
[3] Nie, X.; Doolen, G.D.; Chen, S.Y., Lattice Boltzmann simulation of fluid flows in MEMS, J. stat. phys., 107, 279, (2002) · Zbl 1007.82007
[4] Wagner, A.J.; Giraud, L.; Scott, C.E., Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method, Comput. phys. commun., 129, 227, (2000) · Zbl 0987.76084
[5] Ispolatov, I.; Grant, M., Lattice Boltzmann method for viscoelastic fluids, Phys. rev. E, 65, 65704, (2002)
[6] Krafczyk, M.; Tölke, J.; Rank, E.; Schulz, M., Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods, Comput. struct., 79, 2031, (2001)
[7] Qi, D.; Aidun, C.K., A new method for analysis of the fluid interaction with a deformable membrane, J. stat. phys., 90, 145, (1998) · Zbl 0918.73050
[8] Ladd, A.J.C., Numerical simulation of particulate suspensions via a discretized Boltzmann equation, part 1. theoretical foundation, J. fluid mech., 271, 285, (1994) · Zbl 0815.76085
[9] Ladd, A.J.C.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. stat. phys., 104, 1191, (2001) · Zbl 1046.76037
[10] Feng, Z.-G.; Michaelides, E.E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. comput. phys., 195, 602, (2004) · Zbl 1115.76395
[11] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220, (1977) · Zbl 0403.76100
[12] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. meth. appl. mech. eng., 33, 689, (1982) · Zbl 0508.73063
[13] Glowinski, R.; Pan, T.; Périaux, J., A fictitious domain method for Dirichlet problems and applications, Comput. meth. appl. mech. eng., 111, 283, (1994) · Zbl 0845.73078
[14] Glowinski, R.; Pan, T.; Périaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. meth. appl. mech. eng., 112, 133, (1994) · Zbl 0845.76069
[15] Glowinski, R.; Pan, T.; Hesla, T.I.; Joseph, D.D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. multiphase flow, 25, 755, (1999) · Zbl 1137.76592
[16] Yu, Z.; Phan-Thien, N.; Fan, Y.; Tanner, R.I., Viscoelastic mobility problem of a system of particles, J. non-Newtonian fluid mech., 104, 87, (2002) · Zbl 1058.76592
[17] Baaijens, F.P.T., A fictitious domain/mortar element method for fluid-structure interaction, Int. J. numer. meth. fluids, 35, 743, (2001) · Zbl 0979.76044
[18] de Hart, J.; Peters, G.W.M.; Schreurs, P.J.G.; Baaijens, F.P.T., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, J. biomech., 36, 103, (2003)
[19] Z. Yu, A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys. (submitted) · Zbl 1177.76304
[20] Lee, T.; Lin, C., Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change, Phys. rev. E, 67, 056703, (2003)
[21] Qian, Y.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. lett., 17, 479, (1992) · Zbl 1116.76419
[22] Sussman, T.; Bathe, K.J., A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. struct., 26, 357, (1987) · Zbl 0609.73073
[23] Zienkiewicz, O.C.; Morgan, K., Finite elements and approximation, (1983), Wiley Chichester · Zbl 0582.65068
[24] Lai, M.C.; Peskin, C.S., An immersed boundary method with formal second order accuracy and reduced numerical viscosity, J. comput. phys., 160, 705, (2000) · Zbl 0954.76066
[25] Yu, D.; Mei, R.; Shyy, W., A multi-block lattice Boltzmann method for viscous fluid flows, Int. J. numer. meth. fluids, 39, 99, (2002) · Zbl 1036.76051
[26] Shu, C.; Chew, Y.T.; Niu, X.D., Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry, Phys. rev. E, 64, 045701, (2001)
[27] Tuann, S.Y.; Olson, M.D., Numerical studies of the flow around a circular cylinder by a finite element method, Comput. fluids, 6, 219, (1978) · Zbl 0394.76038
[28] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. fluid mech., 98, 819, (1980) · Zbl 0428.76032
[29] Gresho, P.M.; Chan, R.; Upson, C.; Lee, R., A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations: part 2: applications, Int. J. numer. methods fluids, 4, 619, (1984) · Zbl 0559.76031
[30] He, X.; Doolen, G., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. comput. phys., 134, 306, (1997) · Zbl 0886.76072
[31] Saiki, E.M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. comput. phys., 123, 450, (1996) · Zbl 0848.76052
[32] Ding, H.; Shu, C.; Yeo, K.S.; Xu, D., Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method, Comput. methods appl. mech. eng., 193, 727, (2004) · Zbl 1068.76062
[33] Niu, X.D.; Chew, Y.T.; Shu, C., Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method, J. comput. phys., 188, 176, (2003) · Zbl 1038.76033
[34] Chew, Y.T.; Shu, C.; Niu, X.D., Simulation of unsteady incompressible flows by using Taylor series expansion- and least square-based lattice Boltzmann method, Int. J. mod. phys. C, 13, 719, (2002) · Zbl 1086.82568
[35] Zhang, J.; Childress, S.; Libchaber, A.; Shelley, M., Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408, 835, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.