×

zbMATH — the first resource for mathematics

On the dynamics of dengue epidemics from large-scale information. (English) Zbl 1086.92048
Summary: A model for the spatial and temporal dynamics of dengue fever is proposed. The vector population dynamics is derived from a diffusion equation that is based on environmental parameters at the scale of a remote-sensing image. Vectors and hosts populations are then classically divided into compartments corresponding to their respective disease status. The transmission processes between hosts and vectors are described by a set of differential equations.
The link between the vector population diffusion model and the compartmental model enables one to describe both the spatial and temporal dynamics of the disease. Simulations in artificial and actual landscapes show the advantage of using remotely sensed and complementary meteorological data for modelling in a realistic way the geographic spread of a vector-borne disease such as dengue fever.

MSC:
92D30 Epidemiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdel-Rahman, M.S.; El-Bahy, M.M.; Malone, J.B.; Thompson, R.A.; El Bahy, N., Geographic information systems as a tool for control program management for schistosomiasis in Egypt, Acta trop., 79, 49-57, (2001)
[2] Anderson, R.M.; May, R.M., Spatial and other kinds of heterogeneity, (), 304-318
[3] Beck, L.R.; Rodriguez, M.H.; Dister, S.W.; Rodriguez, A.D.; Washino, R.K.; Roberts, D.R.; Spanner, M.A., Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of chiapas, Mexico, Am. J. trop. med. hyg., 56, 99-106, (1997)
[4] Bolker, B., 1997. Heterogeneity of mixing and spatio-temporal models: advances and open problems. RSS Epidemics Workshop, Isle of Skye, 31 March-12 April.
[5] Boone, J.D.; McGwire, K.C.; Otteson, E.W.; DeBaca, R.S.; Kuhn, E.A.; Villard, P.; Brussard, P.F.; St. Jeor, S.C., Remote sensing and geographic information systems: charting sin nombre virus infections in deer mice, Emerg. infect. dis., 6, 248-258, (2000)
[6] Carbajo, A.E.; Schweigmann, N.; Curto, S.I.; de Garin, A.; Bejaran, R., Dengue transmission risk maps of Argentina, Trop. med. int. health, 6, 170-183, (2001)
[7] Cline, B.L., New eyes for the epidemiologists: aerial photography and other remote sensing techniques, J. epidemiol., 92, 85-89, (1970)
[8] Cracknell, A.P.; Hayes, L.W.B., Introduction to remote sensing, (1993), Taylor & Francis London
[9] Curran, P.J.; Atkinson, P.M.; Foody, G.M.; Milton, E.J., Linking remote sensing, land cover and disease, Adv. parasitol., 47, 37-80, (2000)
[10] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Math. biosci., 150, 131-151, (1998) · Zbl 0930.92020
[11] Esteva, L.; Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. biosci., 167, 51-64, (2000) · Zbl 0970.92011
[12] Feng, Z.; Velasco-Hernández, J.X., Competitive exclusion in a vector – host model for the dengue fever, J. math. biol., 35, 523-544, (1997) · Zbl 0878.92025
[13] Focks, D.A.; Daniels, E.; Haile, D.G.; Keesling, J.E., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulations results, Am. J. trop. med. hyg., 53, 489-506, (1995)
[14] Hay, S.I.; Packer, M.J.; Rogers, D.J., The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease, Int. J. remote sensing, 18, 2899-2930, (1997)
[15] Källen, A.; Arcuri, P.; Murray, J.D., A simple model for the spatial spread and control of rabies, J. theor. biol., 116, 377-393, (1985)
[16] McBride, W.J.H.; Bielefeldt-Ohmann, H., Dengue viral infections; pathogenesis and epidemiology, Microbes inf., 2, 1041-1050, (2000)
[17] McKenzie, J.S.; Morris, R.S.; Pfeiffer, D.U.; Dymond, J.R., Application of remote sensing to enhance the control of wildlife-associated mycobacterium bovis infection, Photogrammetric eng. remote sensing, 68, 153-159, (2002)
[18] Murray, J.D., Geographic spread and control of epidemics, (), 661-721
[19] Newman, M.E.J., Spread of epidemic disease on networks, Phys. rev. E, 66, 016128, (2002)
[20] Newton, E.A.C.; Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, Am. J. trop. med. hyg., 47, 709-720, (1992)
[21] Pongsumpun, P.; Tang, I.M., A realistic age structured transmission model for dengue hemorrhagic fever in Thailand, Southeast Asian J. trop. med. public health, 32, 336-340, (2001)
[22] Raffy, M.; Tran, A., On the dynamics of flying insects populations controlled by large scale information, Theor. popul. biol., 68, 2, 91-104, (2005) · Zbl 1085.92051
[23] Sattenspiel, L.; Dietz, K., A structured epidemic model incorporating geographic mobility among regions, Math. biosci., 128, 71-91, (1995) · Zbl 0833.92020
[24] Schmit, D., Favier, C, Müller-Graf, C., Dubois, M. A., 2003. Premiers pas vers une modélisation spatio-temporelle de la dengue. Atelier de Modélisation en Epidémiologie, Cargèse, France, 10-13 mars.
[25] Schowengerdt, R.A., Remote sensing, (1997), Academic Press New York
[26] Tran, A.; Gardon, J.; Weber, S.; Polidori, L., Mapping disease incidence using remotely sensed data, Am. J. epidemiol., 156, 662-668, (2002)
[27] Dengue haemorrhagic fever: diagnosis, treatment, prevention and control, (1997), WHO Public Geneva
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.