zbMATH — the first resource for mathematics

Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice. (English) Zbl 1086.82501
Summary: This is a general and exact study of multiple Hamiltonian walks (HAW) filling the two-dimensional (2D) Manhattan lattice. We generalize the original exact solution for a single HAW by Kasteleyn to a system of multiple closed walks, aimed at modeling a polymer melt. In 2D, two basic nonequivalent topological situations are distinguished. (1) the Hamiltonian loops are all rooted and contractible to a point: adjacent one to another, and, on a torus, homotopic to zero. (2) the loops can encircle one another and, on a torus, can wind around it. For case 1, the grand canonical partition function and multiple correlation functions are calculated exactly as those of multiple rooted spanning trees or of a massive 2D free field, critical at zero mass (zero fugacity). The conformally invariant continuum limit on a Manhattan torus is studied in detail. The melt entropy is calculated exactly. We also consider the relevant effect of free boundary conditions. The number of single HAWs on Manhattan lattices with other perimeter shapes (rectangular, Kagomé, triangular, and arbitrary) is studied and related to the spectral theory of the Dirichlet Laplacian. This allows the calculation of exact shape-dependent configuration exponents y. An exact surface critical exponent is obtained. Forcase 2, nested and winding Hamiltonian circuits are allowed. An exact equivalence to the critical \(Q\)-state Potts model exists, where \(Q^{1/2}\) is the walk fugacity. The Hamiltonian system is then always critical (for \(Q<-4\)). The exact critical exponents, in infinite numbers, are universal and identical to those of the \(O(n=Q^{1/2})\) model in its low-temperature phase, i.e. are those of dense polymers. The exact critical partition functions on the torus are given from conformai invariance theory. These models 1 and 2 yield the two first exactly solved models of polymer melts.

82B05 Classical equilibrium statistical mechanics (general)
05C20 Directed graphs (digraphs), tournaments
05C45 Eulerian and Hamiltonian graphs
60G50 Sums of independent random variables; random walks
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
Full Text: DOI
[1] W. Hamilton, Tour around the world: Twenty towns on the earth are figured by the 20 vertices of a regular dodecahedron (a polyhedron with 12 pentagonal faces and 20 vertices).
[2] C. Berge,Graphes et hypergraphes (Dunod, Paris, 1970). · Zbl 0213.25702
[3] L. Euler,Commentationes Arithmeticae Collectae (St. Peterburg, 1766), p. 337.
[4] P. W. Kasteleyn,Physica 29:1329 (1963). · doi:10.1016/S0031-8914(63)80241-4
[5] F. Harary, ed.,Graph Theory and Theoretical Physics (Academic Press, London, 1967). · Zbl 0202.55602
[6] T. van Aardenne-Ehrenfest and N. G. de Bruijn,Simon Stevin 28:203 (1951).
[7] W. T. Tutte,Proc. Camb. Phil. Soc. 44:463 (1948). · doi:10.1017/S030500410002449X
[8] G. Kirchhoff,Ann. Phys. Chem. 72:497 (1847). · doi:10.1002/andp.18471481202
[9] M. N. Barber,Physica 48:237 (1970). · doi:10.1016/0031-8914(70)90024-8
[10] A. Malakis,Physica 84A:256 (1976).
[11] W. J. C. Orr,Trans. Faraday Soc. 43:12 (1947). · doi:10.1039/tf9474300012
[12] C. Domb,Polymer 15:259 (1974). · doi:10.1016/0032-3861(74)90121-9
[13] J. F. Nagle,Proc. R. Soc. Lond. A 337:569 (1974). · doi:10.1098/rspa.1974.0068
[14] M. Gordon, P. Kapadia, and A. Malakis,J. Phys. A 5:751 (1976). · doi:10.1088/0305-4470/9/5/011
[15] P. D. Gujrati and M. Goldstein,J. Chem. Phys. 74:2596 (1981). · doi:10.1063/1.441332
[16] T. G. Schmaltz, G. E. Hite, and D. J. Klein,J. Phys. A 17:445 (1984). · doi:10.1088/0305-4470/17/2/029
[17] H. Orland, C. Itzykson, and C. De Dominicis,J. Phys. Lett. (Paris) 46:L353 (1985).
[18] J. F. Nagle, P. D. Gujrati, and M. Goldstein,J. Phys. Chem. 88:4599 (1984); J. F. Nagle,J. Stat. Phys. 38:531 (1985). · doi:10.1021/j150664a033
[19] M. G. Bawendi and K. F. Freed,J. Chem. Phys. 84:7036 (1986). · doi:10.1063/1.450625
[20] B. Duplantier,J. Phys. A 19:L1009 (1986). · doi:10.1088/0305-4470/19/16/011
[21] H. Saleur,Phys. Rev. B 35:3657 (1987). · doi:10.1103/PhysRevB.35.3657
[22] B. Duplantier and H. Saleur,Nucl. Phys. B 290[FS20]:291 (1987). · doi:10.1016/0550-3213(87)90190-8
[23] M. den Nijs,Phys. Rev. B 27:1674 (1983), and references therein. · doi:10.1103/PhysRevB.27.1674
[24] B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982);J. Stat. Phys. 34:781 (1984); inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987). · doi:10.1103/PhysRevLett.49.1062
[25] B. Duplantier,J. Stat. Phys. 49:411 (1987). · doi:10.1007/BF01009343
[26] F. Y. Wu,Rev. Mod. Phys. 54:239 (1982). · doi:10.1103/RevModPhys.54.235
[27] J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).
[28] J. L. Cardy,Nucl. Phys. B 275[FS17]:580 (1986). · doi:10.1016/0550-3213(86)90596-1
[29] A. Weil,Elliptic Functions According to Eisenstein and Kronecker (Springer-Verlag, 1976). · Zbl 0318.33004
[30] C. Itzykson and J. B. Zuber,Nucl. Phys. B 275:561 (1986). · doi:10.1016/0550-3213(86)90576-6
[31] N. L. Balazs, C. Schmit, and A. Voros,J. Stat. Phys. 46:1067 (1987), and references therein. · Zbl 0692.58027 · doi:10.1007/BF01011157
[32] A. E. Ferdinand and M. E. Fisher,Phys. Rev. B 185:832 (1969). · doi:10.1103/PhysRev.185.832
[33] H. Saleur and C. Itzykson,J. Stat. Phys. 48:449 (1987). · Zbl 1084.82537 · doi:10.1007/BF01019682
[34] C. Itzykson, Marseille Lecture Notes, SPhT/86 (1986).
[35] R. G. Petschek and P. Pfeuty,Phys. Rev. Lett. 58:1096 (1987). · doi:10.1103/PhysRevLett.58.1096
[36] H. Blöte, M. P. Nightingale, and J. L. Cardy,Phys. Rev. Lett. 56:742 (1986); I. Affleck,Phys. Rev. Lett. 56:746 (1986). · doi:10.1103/PhysRevLett.56.742
[37] M. Gaudin,J. Phys. (Paris) 48:1633 (1987).
[38] M. Kac,Am. Math. Monthly 73:1 (1966); H. P. McKean and I. M. Singer,J. Diff. Geom. 1:43 (1967); H. P. Baltes and E. R. Hilf,Spectra of Finite Systems (Bibliographisches Institut, Mannheim, 1976), Chapter VI. · Zbl 0139.05603 · doi:10.2307/2313748
[39] B. Duplantier and H. Saleur,Phys. Rev. Lett. 57:3179 (1986). · doi:10.1103/PhysRevLett.57.3179
[40] R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A 9:397 (1976). · Zbl 0321.05140 · doi:10.1088/0305-4470/9/3/009
[41] R. J. Baxter,J. Phys. C 6:L445 (1973). · doi:10.1088/0022-3719/6/23/005
[42] H. Saleur and B. Duplantier,Phys. Rev. Lett. 58:2325 (1987). · doi:10.1103/PhysRevLett.58.2325
[43] H. Saleur,J. Phys. A 19:L807 (1986). · doi:10.1088/0305-4470/19/13/009
[44] C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972). · doi:10.1016/0031-8914(72)90045-6
[45] P. Di Francesco, H. Saleur, and J. B. Zuber,Nucl. Phys. B 285[FS19]:454 (1987);J. Stat. Phys. 49:57 (1987). · doi:10.1016/0550-3213(87)90349-X
[46] V. L. S. Dotsenko and V. A. Fateev,Nucl. Phys. B 240:312 (1984). · doi:10.1016/0550-3213(84)90269-4
[47] B. Duplantier,Phys. Rev. Lett. 57:941 (1986). · doi:10.1103/PhysRevLett.57.941
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.