×

zbMATH — the first resource for mathematics

Some common fixed point theorems for weakly compatible mappings. (English) Zbl 1086.54027
The authors modify the definition of weakly compatibility for non self mappings. They generalize the theorem of Rhoades [B. E. Rhoades, Int. J. Math. Math. Sci. 20, 9–12 (1997; Zbl 0882.47038)]. To accomplish this the authors improve the method of proof used by Rhoades [loc. cit.] and Ahmed and Rhoades [A. Ahmed, B. E. Rhoades, Indian J. Pure Appl. Math. 32, 1247–1254 (2001; Zbl 0978.54029)].

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
47H10 Fixed-point theorems
47H04 Set-valued operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmed, A.; Khan, A.R., Some fixed point theorems for non-self hybrid contractions, J. math. anal. appl., 213, 275-280, (1997) · Zbl 0902.47047
[2] Ahmed, A.; Rhoades, B.E., Some common fixed point theorems for compatible mappings, Indian J. pure appl. math., 32, 1247-1254, (2001) · Zbl 0978.54029
[3] Assad, N.A., Fixed point theorems for set valued transformations on compact sets, Boll. unione mat. ital., 4, 1-7, (1973) · Zbl 0265.54046
[4] Assad, N.A.; Kirk, W.A., Fixed point theorems for set valued mappings of contractive type, Pacific J. math., 43, 553-562, (1972) · Zbl 0239.54032
[5] Ćirić, Lj.B., Fixed points for generalized multi-valued mappings, Mat. vesnik, 9, 24, 265-272, (1972) · Zbl 0258.54043
[6] Ćirić, Lj.B., A remark on rhoades fixed point theorem for non-self mappings, Int. J. math. math. sci., 16, 397-400, (1993) · Zbl 0820.47060
[7] Ćirić, Lj.B., Quasi-contraction non-self mappings on Banach spaces, Bull. acad. serbe sci. arts, 23, 25-31, (1998) · Zbl 1261.47070
[8] Ćirić, Lj.B.; Ume, J.S.; Khan, M.S.; Pathak, H.K., On some non-self mappings, Math. nachr., 251, 28-33, (2003) · Zbl 1024.47033
[9] Hadžić, O., A theorem on coincidence points for multi-valued mappings in convex metric spaces, Zb. rad. univ. u novom sadu, 19, 233-240, (1989) · Zbl 0718.54048
[10] Itoh, S., Multi-valued generalized contractions and fixed point theorems, Comment. math. univ. carolin., 18, 247-258, (1977) · Zbl 0359.54038
[11] Jungck, G., Commuting mappings and fixed points, Amer. math. monthly, 83, 261-263, (1976) · Zbl 0321.54025
[12] Jungck, G., Compatible mappings and common fixed points, Int. J. math. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[13] Jungck, G., Compatible mappings and common fixed points “revisited”, Int. J. math. math. sci., 17, 37-40, (1994) · Zbl 0802.47053
[14] Jungck, G., Common fixed points for commuting and compatible maps on compacta, Proc. amer. math. soc., 103, 977-983, (1988) · Zbl 0661.54043
[15] Jungck, G.; Pathak, H.K., Fixed points via “biased maps”, Proc. amer. math. soc., 123, 2049-2060, (1995) · Zbl 0824.47045
[16] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. math. math. sci., 12, 257-262, (1989) · Zbl 0671.54023
[17] Markin, J.T., A fixed point theorem for set-valued mappings, Bull. amer. math. soc., 74, 639-640, (1968) · Zbl 0159.19903
[18] Nadler, S.B., Multi-valued contraction mappings, Pacific J. math., 30, 475-488, (1969) · Zbl 0187.45002
[19] Pathak, H.K., Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta math. hungar., 67, 69-78, (1995) · Zbl 0821.54027
[20] Ray, B.K., On ćirić’s fixed point theorem, Fund. math., XCIV, 221-229, (1977) · Zbl 0345.54044
[21] Rhoades, B.E., A fixed point theorem for some non-self mappings, Math. japon., 23, 457-459, (1978) · Zbl 0396.47038
[22] Rhoades, B.E., A fixed point theorem for non-self set-valued mappings, Int. J. math. math. sci., 20, 9-12, (1997) · Zbl 0882.47038
[23] Rus, A., Generalized contraction and applications, (2001), Cluj-Univ. Press · Zbl 0968.54029
[24] Sastry, K.P.R.; Naidu, S.V.R.; Prasad, J.R., Common fixed points for multi-maps in a metric space, Nonlinear anal., 13, 221-229, (1989) · Zbl 0674.54030
[25] Tsachev, T.; Angelov, V.G., Fixed points of non-self mappings and applications, Nonlinear anal., 21, 1, 9-16, (1993) · Zbl 0816.47065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.