×

zbMATH — the first resource for mathematics

Cramer–Rao information plane of orthogonal hypergeometric polynomials. (English) Zbl 1086.33010
The classical hypergeometric polynomials \(\{p\,_n(x)\}^\infty_{n=0}\), which are orthogonal with respect to a weight function \(\omega(x)\) defined on a real interval, are analyzed in the Cramer-Rao information plane, that is the plane defined by both Fisher information and variance of the probability density \(\rho\,_n(x)=p\,_n(x)^2\,\omega(x)\). The Rakhmanov density \(\rho_n(x)\) of these polynomials, which describes the probability density of the quantum states for various physical prototypes in an exact manner and for numerous physical systems to a very good approximation, is discussed in detail.

MSC:
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
94A17 Measures of information, entropy
62B10 Statistical aspects of information-theoretic topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews, G.; Askey, R.; Roy, R., Special functions, (1999), Cambridge University Press Cambridge
[2] Aptekarev, A.; Buyarov, V.; Dehesa, J.S., Asymptotic behavior of the \(L^p\)-norms and the entropy for general orthogonal polynomials, Russian acad. sci. sb. math., 82, 373-395, (1995)
[3] Bagrov, V.; Gitman, D., Exact solutions of relativistic wavefunctions, (1990), Kluwer Academic Publishers Dordrecht · Zbl 0723.35066
[4] Buyarov, V.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Lara, J., Computation of the entropy of polynomials orthogonal on an interval, SIAM J. sci. comput., 26, 488-509, (2005) · Zbl 1082.33004
[5] Carballo, G.; Álvarez-Nodarse, R.; Dehesa, J.S., Chebyshev polynomials in a speech recognition model, Appl. math. lett., 14, 581-585, (2001) · Zbl 1017.68106
[6] Cover, T.; Thomas, J., Elements of information theory, (1991), Wiley New York
[7] Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Ruiz, J., Quantum information entropies and orthogonal polynomials, J. comput. appl. math., 133, 23-46, (2001) · Zbl 1008.81014
[8] Dehesa, J.S.; van Assche, W.; Yáñez, R., Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom, Phys. rev. A, 50, 3065-3079, (1994)
[9] Dehesa, J.S.; van Assche, W.; Yáñez, R., Information entropy of classical orthogonal polynomials and their application to the harmonic oscillator and Coulomb potentials, Methods appl. anal., 4, 91-110, (1997) · Zbl 0877.33005
[10] Dembo, A.; Cover, T.; Thomas, J., Information theoretic inequalities, IEEE trans. inform. theory, 37, 1501-1528, (1991) · Zbl 0741.94001
[11] Fisher, R., Theory of statistical estimation, Proc. Cambridge philos. soc., 22, 700-725, (1925) · JFM 51.0385.01
[12] Frieden, B.R., Science from Fisher information, (2004), Cambridge University Press Cambridge · Zbl 0881.60016
[13] Galindo, A.; Pascual, P., Quantum mechanics, (1990), Springer Berlin · Zbl 0824.00008
[14] Nikiforov, A.; Uvarov, V., Special functions in mathematical physics, (1988), Birkäuser, Verlag Basel
[15] Rakhmanov, E., On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-sb., 32, 199-213, (1977) · Zbl 0401.30033
[16] J. Sánchez-Ruiz, J.S. Dehesa, Fisher information of orthogonal hypergeometric polynomials, J. Comput. Appl. Math. (2005), in press. · Zbl 1081.33017
[17] Shannon, C., A mathematical theory of communication, Bell systems tech. J., 27, 379-423, (1948), 623-656 · Zbl 1154.94303
[18] Stam, A., Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. control, 2, 105-112, (1959) · Zbl 0085.34701
[19] Szegö, G., Orthogonal polynomials, (1975), American Mathematical Society Providence, RI · JFM 65.0278.03
[20] Ushveridze, A., Quasi-exactly solvable models in quantum mechanics, (1994), IOP Bristol · Zbl 0834.58042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.