×

zbMATH — the first resource for mathematics

Firing rate of the noisy quadratic integrate-and-fire neuron. (English) Zbl 1085.68617
Summary: We calculate the firing rate of the quadratic integrate-and-fire neuron in response to a colored noise input current. Such an input current is a good approximation to the noise due to the random bombardment of spikes, with the correlation time of the noise corresponding to the decay time of the synapses. The key parameter that determines the firing rate is the ratio of the correlation time of the colored noise, \(\tau_s\), to the neuronal time constant, \(\tau_m\). We calculate the firing rate exactly in two limits: when the ratio, \(\tau_s/\tau_m\), goes to zero (white noise) and when it goes to infinity. The correction to the short correlation time limit is \(\mathcal O(\tau_s/\tau_m)\), which is qualitatively different from that of the leaky integrate-and-fire neuron, where the correction is \(\mathcal O(\sqrt{ \tau_s/\tau_m})\). The difference is due to the different boundary conditions of the probability density function of the membrane potential of the neuron at firing threshold. The correction to the long correlation time limit is \(\mathcal O(\tau_m/\tau_s)\). By combining the short and long correlation time limits, we derive an expression that provides a good approximation to the firing rate over the whole range of \(\tau_s/\tau_m\) in the suprathreshold regime – that is, in a regime in which the average current is sufficient to make the cell fire. In the subthreshold regime, the expression breaks down somewhat when \(\tau_s\) becomes large compared to \(\tau_m\).

MSC:
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevE.48.1483 · doi:10.1103/PhysRevE.48.1483
[2] DOI: 10.1088/0954-898X/8/4/003 · Zbl 0904.92013 · doi:10.1088/0954-898X/8/4/003
[3] DOI: 10.1093/cercor/7.3.237 · doi:10.1093/cercor/7.3.237
[4] DOI: 10.1088/0954-898X/2/3/003 · Zbl 0900.92047 · doi:10.1088/0954-898X/2/3/003
[5] DOI: 10.1126/science.290.5498.1968 · doi:10.1126/science.290.5498.1968
[6] DOI: 10.1023/A:1008925309027 · Zbl 1036.92008 · doi:10.1023/A:1008925309027
[7] DOI: 10.1162/089976699300016179 · doi:10.1162/089976699300016179
[8] DOI: 10.1006/jtbi.1998.0782 · doi:10.1006/jtbi.1998.0782
[9] DOI: 10.1098/rspb.1976.0074 · doi:10.1098/rspb.1976.0074
[10] DOI: 10.1016/S0896-6273(02)00820-6 · doi:10.1016/S0896-6273(02)00820-6
[11] DOI: 10.1103/PhysRevA.39.149 · doi:10.1103/PhysRevA.39.149
[12] Destexhe A., J. Neurophysiol. 81 pp 1531– (1999)
[13] DOI: 10.1016/S0306-4522(01)00344-X · doi:10.1016/S0306-4522(01)00344-X
[14] DOI: 10.1162/neco.1996.8.5.979 · doi:10.1162/neco.1996.8.5.979
[15] DOI: 10.1137/0146017 · Zbl 0594.58033 · doi:10.1137/0146017
[16] DOI: 10.1162/089976602320264015 · Zbl 1009.92007 · doi:10.1162/089976602320264015
[17] DOI: 10.1162/089976698300017331 · doi:10.1162/089976698300017331
[18] DOI: 10.1103/PhysRevLett.86.4175 · doi:10.1103/PhysRevLett.86.4175
[19] DOI: 10.1162/089976603321043685 · Zbl 1031.68098 · doi:10.1162/089976603321043685
[20] DOI: 10.1162/089976600300015493 · doi:10.1162/089976600300015493
[21] Latham P. E., J. Neurophysiol. 83 pp 808– (2000)
[22] DOI: 10.1103/PhysRevLett.89.288101 · doi:10.1103/PhysRevLett.89.288101
[23] DOI: 10.1023/A:1008912914816 · Zbl 0999.92008 · doi:10.1023/A:1008912914816
[24] DOI: 10.1073/pnas.0337591100 · doi:10.1073/pnas.0337591100
[25] DOI: 10.1103/PhysRevA.43.663 · doi:10.1103/PhysRevA.43.663
[26] DOI: 10.1162/089976600300015510 · doi:10.1162/089976600300015510
[27] DOI: 10.1007/BF01044713 · doi:10.1007/BF01044713
[28] Softky W. R., J. Neurosci. 13 pp 334– (1993)
[29] DOI: 10.1088/0954-898X/4/3/002 · Zbl 0798.92009 · doi:10.1088/0954-898X/4/3/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.