×

zbMATH — the first resource for mathematics

Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. (English) Zbl 1085.68615
Summary: In model networks of E-cells and I-cells (excitatory and inhibitory neurons, respectively), synchronous rhythmic spiking often comes about from the interplay between the two cell groups: the E-cells synchronize the I-cells and vice versa. Under ideal conditions – homogeneity in relevant network parameters and all-to-all connectivity, for instance – this mechanism can yield perfect synchronization. We find that approximate, imperfect synchronization is possible even with very sparse, random connectivity. The crucial quantity is the expected number of inputs per cell. As long as it is large enough (more precisely, as long as the variance of the total number of synaptic inputs per cell is small enough), tight synchronization is possible. The desynchronizing effect of random connectivity can be reduced by strengthening the E\(\to\)I synapses. More surprising, it cannot be reduced by strengthening the I\(\to\)E synapses. However, the decay time constant of inhibition plays an important role. Faster decay yields tighter synchrony. In particular, in models in which the inhibitory synapses are assumed to be instantaneous, the effects of sparse, random connectivity cannot be seen.

MSC:
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevA.41.590
[2] DOI: 10.1023/A:1008925309027 · Zbl 1036.92008
[3] DOI: 10.1162/089976699300016179
[4] DOI: 10.1162/089976601317098475 · Zbl 1004.92006
[5] DOI: 10.1007/BF00160806 · Zbl 05474275
[6] Diener F., C. R. Acad. Sci. Paris 302 pp 55– (1985)
[7] Diener M., C. R. Acad. Sci. Paris 301 pp 899– (1985)
[8] DOI: 10.1038/990101
[9] DOI: 10.1162/neco.1996.8.5.979
[10] DOI: 10.1137/0146017 · Zbl 0594.58033
[11] DOI: 10.1162/089976600300015529
[12] DOI: 10.1162/089976698300017331
[13] DOI: 10.1103/PhysRevLett.86.4175
[14] DOI: 10.1113/jphysiol.1948.sp004260
[15] DOI: 10.1109/72.761707
[16] DOI: 10.1142/S0218127400000840 · Zbl 1090.92505
[17] DOI: 10.1137/0150098 · Zbl 0712.92006
[18] DOI: 10.1002/hipo.1041
[19] DOI: 10.1088/0954-898X/13/1/302 · Zbl 1019.92002
[20] DOI: 10.1080/net.12.2.215.233
[21] DOI: 10.1146/annurev.physiol.61.1.435
[22] DOI: 10.1162/08997660151134280 · Zbl 1004.92011
[23] DOI: 10.1126/science.274.5293.1724
[24] DOI: 10.1162/089976698300017214
[25] Wang X.-J., J. Neurosci. 16 pp 6402– (1996)
[26] DOI: 10.1073/pnas.92.12.5577
[27] DOI: 10.1016/S0167-8760(00)00173-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.