×

zbMATH — the first resource for mathematics

Lundberg-type bounds for the joint distribution of surplus immediately before and at ruin under the Sparre Andersen model. With discussions. (English) Zbl 1085.60517
Summary: We consider the Sparre Andersen insurance risk model. Three cases are discussed: the ordinary renewal risk process, stationary renewal risk process, and s-delayed renewal risk process. In the first part we study the joint distribution of surplus immediately before and at ruin under the renewal insurance risk model. By constructing an exponential martingale, we obtain Lundberg-type upper bounds for the joint distribution. Consequently we obtain bounds for the distribution of the deficit at ruin and ruin probability. In the second part we consider the special case of phase-type claims and rederive the closed-form expression for the distribution of the severity of ruin, obtained by Drekic et al. (2003, 2004). Finally, we present some numerical results to illustrate the tightness of the bounds obtained in this paper.

MSC:
60K10 Applications of renewal theory (reliability, demand theory, etc.)
60K05 Renewal theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asmussen Søren, Ruin Probabilities (2000)
[2] Asmussen Søren, Applied Probability and Queues, 2. ed. (2003)
[3] Asmussen Søren, Scandinavian Journal of Statistics 30 pp 365– (1996)
[4] Bowers Newton L., Actuarial Mathematics, 2. ed. (1997) · Zbl 0634.62107
[5] Cheng Yebin, North American Actuarial Journal 7 (1) pp 1– (2003) · Zbl 1084.60544 · doi:10.1080/10920277.2003.10596073
[6] Dickson David C. M., Insurance: Mathematics and Economics 11 pp 191– (1992) · Zbl 0770.62090 · doi:10.1016/0167-6687(92)90026-8
[7] Dickson David C. M., Insurance: Mathematics and Economics 14 pp 51– (1994) · Zbl 0803.62091 · doi:10.1016/0167-6687(94)00005-0
[8] Dickson David C. M., Insurance: Mathematics and Economics 34 pp 97– (2004) · Zbl 1043.60036 · doi:10.1016/j.insmatheco.2003.11.003
[9] Drekic, Steve, Dickson, David C. M., Stanford, David A. and Willmot, Gordon E. 2003. ”The Deficit at Ruin in the Stationary Renewal Risk Model”. Department of Statistics and Actuarial Science, University of Waterloo. Working paper · Zbl 1142.62088
[10] Drekic Steve, Scandinavian Actuarial Journal pp 105– (2004) · Zbl 1142.62088 · doi:10.1080/03461230110106471
[11] Dufresne Fran\cois, Insurance: Mathematics and Economics 7 pp 193– (1988) · Zbl 0674.62072 · doi:10.1016/0167-6687(88)90076-5
[12] Feller William, An Introduction to Probability Theory and Its Applications, 3. ed. (1968) · Zbl 0077.12201
[13] Feller William, An Introduction to Probability Theory and Its Applications, 2. ed. (1971) · Zbl 0077.12201
[14] Gerber Hans U., Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker pp 205– (1973)
[15] Gerber Hans U, An Introduction to Mathematical Risk Theory (1979) · Zbl 0431.62066
[16] Gerber Hans U., ASTIN Bulletin 17 pp 151– (1987) · doi:10.2143/AST.17.2.2014970
[17] Gerber Hans U., Insurance: Mathematics and Economics 21 pp 129– (1997) · Zbl 0894.90047 · doi:10.1016/S0167-6687(97)00027-9
[18] Gerber Hans U., North American Actuarial Journal 2 (1) pp 48– (1998) · Zbl 1081.60550 · doi:10.1080/10920277.1998.10595671
[19] Gerber Hans U., North American Actuarial Journal 7 (3) pp 117– (2003) · Zbl 1084.60545 · doi:10.1080/10920277.2003.10596110
[20] DOI: 10.1080/10920277.2005.10596197 · Zbl 1085.62508 · doi:10.1080/10920277.2005.10596197
[21] Grandell Jan, Aspects of Risk Theory (1991) · doi:10.1007/978-1-4613-9058-9
[22] Li Shuanming, North American Actuarial Journal 7 (3) pp 119– (2003) · Zbl 1084.60547 · doi:10.1080/10920277.2003.10596111
[23] Li Shuanming, Insurance: Mathematics and Economics 34 pp 391– (2004) · Zbl 1188.91089 · doi:10.1016/j.insmatheco.2004.01.002
[24] Lin Sheldon X, North American Actuarial Journal 7 (3) pp 122– (2003) · Zbl 1084.60548 · doi:10.1080/10920277.2003.10596112
[25] Neuts Marcel F., Matrix-Geometric Solutions in Stochastic Models (1981) · Zbl 0469.60002
[26] Rolski Tomasz, Stochastic Processes for Insurance and Finance (1999) · doi:10.1002/9780470317044
[27] Schmickler Leonhard, Stochastic Models 6 pp 131– (1992) · Zbl 0749.60012 · doi:10.1080/15326349208807217
[28] Tsai Cary Chi-Liang, Insurance: Mathematics and Economics 35 pp 5– (2004) · Zbl 1215.62114 · doi:10.1016/j.insmatheco.2004.01.005
[29] Willmot Gordon E., Insurance: Mathematics and Economics 34 pp 251– (2004) · Zbl 1114.60068 · doi:10.1016/j.insmatheco.2003.12.005
[30] Willmot Gordon E., Insurance: Mathematics and Economics 32 pp 403– (2003) · Zbl 1072.91027 · doi:10.1016/S0167-6687(03)00129-X
[31] Willmot Gordon E., Lundberg Approximations for Compound Distributions with Insurance Applications (2001) · Zbl 0962.62099 · doi:10.1007/978-1-4613-0111-0
[32] Yang Hailiang, North American Actuarial Journal 5 (3) pp 92– (2001) · Zbl 1083.62547 · doi:10.1080/10920277.2001.10596001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.