×

zbMATH — the first resource for mathematics

Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. (English) Zbl 1084.74014
Summary: In order to model the effects of grain boundaries in polycrystalline materials, we have coupled a crystal-plasticity model for the grain interiors with a new elastic-plastic grain-boundary interface model which accounts for both reversible elastic, as well irreversible inelastic sliding-separation deformations at the grain boundaries prior to failure. We have used this new computational capability to study the deformation and fracture response of nanocrystalline nickel. The results from the simulations reflect the macroscopic experimentally observed tensile stress-strain curves, and the dominant microstructural fracture mechanisms in this material. The macroscopically observed nonlinearity in the stress-strain response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the formation of grain-boundary cracks was rarely observed. The stress concentrations at the tips of the distributed grain-boundary cracks, and at grain-boundary triple junctions, cause a limited amount of plastic deformation in the high-strength grain interiors. The competition of grain-boundary deformation with that in the grain interiors determines the observed macroscopic stress-strain response, and the overall ductility. In nanocrystalline nickel, the high-yield strength of the grain interiors and relatively weaker grain-boundary interfaces account for the low ductility of this material in tension.

MSC:
74E15 Crystalline structure
82D35 Statistical mechanical studies of metals
74S05 Finite element methods applied to problems in solid mechanics
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ABAQUS, 2002. ABAQUS Reference manuals. Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI.
[2] Anand, L.; Kothari, M., A computational procedure for rate-independent crystal plasticity, J. mech. phys. solids, 44, 525-558, (1996) · Zbl 1054.74549
[3] Asaro, R.J., Micromechanics of crystals and polycrystals, Adv. appl. mech, 23, 1-115, (1983)
[4] Asaro, R.J.; Needleman, A., Texture development and strain hardening in rate dependent polycrystals, Acta metall, 33, 923-953, (1985)
[5] Asaro, R.J.; Krysl, P.; Kad, B., Deformation mechanism transitions in nanoscale fcc metals, Philos. mag. lett, 83, 733-743, (2003)
[6] Barenblatt, G.I., The formation of equilibrium cracks during brittle fracturegeneral ideas and hypotheses, axially symmetric cracks, Appl. math. mech. (PMM), 23, 622-636, (1959) · Zbl 0095.39202
[7] Bronkhorst, C.A.; Kalidindi, S.R.; Anand, L., Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals, Philos. trans. R. soc. London A, 341, 443-477, (1992)
[8] Camacho, G.T.; Ortiz, M., Computational modeling of impact damage in brittle materials, Int. J. solids struct, 33, 2899-2938, (1996) · Zbl 0929.74101
[9] Cheng, S.; Spencer, J.A.; Milligan, W.W., Strength and tension/compression asymmetry in nanostructured and ultrafine—grain materials, Acta mater, 51, 4505-4518, (2003)
[10] Conrad, H.; Narayan, J., On the grain size softening in nanocrystalline materials, Scr. mater, 42, 1025-1030, (2000)
[11] Derlet, P.M.; Swygenhoven, H.V., The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metalsa molecular dynamics simulation, Philos. mag. A, 82, 1-15, (2002)
[12] Dugdale, D.S., Yielding of steel sheets containing slits, J. mech. phys. solids, 8, 100-104, (1960)
[13] Ebrahami, F.; Zhai, Q.; Kong, D., Deformation and fracture of electrodeposited copper, Scr. mater, 39, 315-321, (1998)
[14] Ebrahami, F.; Bourne, G.R.; Kelly, M.S.; Matthews, T.E., Mechanical properties of nanocrystalline nickel produced by electrodeposition, Nanostruct. mater, 11, 343-350, (1999)
[15] El-Sherik, A.M.; Erb, U., Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, J. mater. sci, 30, 5743-5749, (1995)
[16] Fu, H.H.; Benson, D.J.; Meyers, M.A., Analytical and computational description of effect of grain size on yield stress of metals, Acta mater, 49, 2567-2582, (2001)
[17] Gleiter, H., Nanocrystalline materials, Prog. mater. sci, 33, 223-315, (1989)
[18] Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, J. mech. phys. solids, 13, 89-101, (1965) · Zbl 0127.15302
[19] Hutchinson, J.W.; Evans, A.G., Mechanics of materialstop – down approaches to fracture, Acta mater, 48, 125-135, (2000)
[20] Jeong, D.H.; Gonzalez, F.; Palumbo, G.; Aust, K.T.; Erb, U., The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings, Scr. mater, 44, 493-499, (2001)
[21] Kumar, K.S.; Suresh, S.; Chisolm, M.F.; Horton, J.A.; Wang, P., Deformation of electodeposited nanocrystalline nickel, Acta mater, 51, 387-405, (2003)
[22] Legros, M.; Elliot, B.R.; Rittner, M.N.; Weertman, J.R.; Hemker, K.J., Microsample tensile testing of nanocrystalline metals, Philos. mag. A, 80, 1017-1026, (2000)
[23] Lu, L.; Sui, M.L.; Lu, K., Superplastic extensibility of nanocrystalline copper at room temperature, Science, 287, 1463-1466, (2000)
[24] Lu, L.; Li, S.X.; Lu, K., An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scr. mater, 45, 1163-1169, (2001)
[25] Mandel, J., Generalization de la theorie de la plasticite de W.T. Koiter, Int. J. solids struct, 1, 273-295, (1965)
[26] Mandel, J., 1972. Plasticite Classique et Viscoplasticite. CISM Courses and Lectures No. 97, Springer, Berlin.
[27] McFadden, S.X.; Mishra, R.S.; Valiev, R.Z.; Zhilyaev, A.P.; Mukherjee, A.K., Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature, 398, 684-686, (1999)
[28] Needleman, A., An analysis of decohesion along an imperfect interface, Int. J. fract, 40, 21-40, (1990)
[29] Nieman, G.W.; Weertman, J.R.; Siegel, R.W., Mechanical behavior of nanocrystalline cu and pd, J. mater. res, 6, 1012-1027, (1991)
[30] Rice, J.R., Inelastic constitutive relations for solidsan internal variable theory and its application to metal plasticity, J. mech. phys. solids, 19, 433-455, (1971) · Zbl 0235.73002
[31] Sanders, P.G.; Eastman, J.A.; Weertman, J.R., Elastic and tensile behavior of nanocrystalline copper and palladium, Acta mater, 45, 4019-4025, (1997)
[32] Schiotz, J.; Tolla, F.D.D.; Jacobsen, K.W., Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561-563, (1998)
[33] Schiotz, J.; Vegge, T.; Tolla, F.D.D.; Jacobsen, K.W., Atomic-scale simulations for the mechanical deformation of nanocrystalline metals, Phys. rev. B, 60, 11197-11983, (1999)
[34] Shuh, C.; Nieh, T.G.; Yamasaki, T., Hall-petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scr. mater, 46, 735-740, (2002)
[35] Simmons, G.; Wang, H., Single crystal elastic constants and calculated aggregate properties, (1971), The MIT Press Cambridge
[36] Suryanarayana, C., Nanocrystalline materials, Int. metall. rev, 40, 41-46, (1995)
[37] Swygenhoven, H.V., Plastic deformation in metals with nanosized grainsatomistic simulations and experiments, Mater. sci. forum, 447-448, 3-10, (2004)
[38] Swygenhoven, H.V.; Spaczer, M.; Caro, A., Role of low and high angle grain boundaries in the deformation mechanism of nanophase nia molecular dynamics simulation study, Nanostruct. mater, 10, 819-828, (1998)
[39] Swygenhoven, H.V.; Spaczer, M.; Caro, A., Microscopic description of plasticity in computer generated metallic nanophase samplesa comparision between cu and ni, Acta mate, 47, 3117-3126, (1999)
[40] Swygenhoven, H.V.; Spaczer, M.; Caro, A.; Farkas, D., Competing plastic deformation mechanisms in nanophase metals, Phys. rev. B, 60, 22-25, (1999)
[41] Swygenhoven, H.V., Derlet, P.M., Hasnaoui, A., 2002. Atomic mechanism for dislocation emission from nanosized grain boundaries, Phys. Rev. B 66, 024101-1-024101-8.
[42] Taylor, G., Plastic strain in metals, J. inst. metals, 62, 307-324, (1938)
[43] Teodosiu, C., 1970. A dynamic theory of dislocations and its applications to the theory of the elastic – plastic continuum. In: Simmons, J.A., de Wit, R., Bullough, R. (Eds.) Proceedings of the Conference on Fundamental Aspects of Dislocation Theory, p. 837.
[44] Teodosiu, C.; Sidoroff, F., A theory of finite elastoviscoplasticity of single crystals, Int. J. eng. sci, 14, 165-176, (1976) · Zbl 0329.73037
[45] Torre, F.D.; Swygenhoven, H.V.; Victoria, M., Nanocrystalline electrodeposited nimicrostructure and tensile properties, Acta mater, 50, 3957-3970, (2002)
[46] Wang, N.; Wang, Z.R.; Aust, K.T.; Erb, U., Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mater. sci. eng. A, 237, 150-158, (1997)
[47] Xiao, C.H.; Mirshams, R.A.; Whang, S.H.; Yin, W.M., Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel, Mater. sci. eng. A, 301, 35-43, (2001)
[48] Xu, X.P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. mech. phys. solids, 42, 1397-1434, (1994) · Zbl 0825.73579
[49] Yamakov, V.; Wolf, D.; Salazar, M.; Phillpot, S.R.; Gleiter, H., Length-scale effects in the nucleation of extended dislocations in nanocrystalline al by molecular-dynamics simulation, Acta mater, 49, 2713-2722, (2001)
[50] Yamakov, V.; Wolf, D.; Phillpot, S.R.; Gleiter, H., Grain – boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulations, Acta mater, 50, 61-73, (2002)
[51] Yin, W.M.; Whang, S.H., Creep in boron-doped nanocrystalline nickel, Scr. mater, 44, 569-574, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.