zbMATH — the first resource for mathematics

Lattice friction for crystalline defects: from dislocations to cracks. (English) Zbl 1084.74005
Summary: We propose a discrete model providing a unified description of lattice-induced drag for a class of defects which includes martensitic phase boundaries, dislocations and cracks. Although the model is Hamiltonian, it generates a non-trivial macroscopic friction law which we present as a closed-form functional relation between the velocity of the defect and the conjugate configurational force. The possibility to obtain an exact analytic solution of the dynamic problem allows us to expose both the similarities and the differences in the kinetics of various types of defects. In particular, we trace the origin of the symmetry related resonances, specific for dislocations, and show how the flattening of one of the energy wells, indicating transition to fracture, generates a morphological instability of the displacement profile at a critical velocity.

74A60 Micromechanical theories
74E15 Crystalline structure
74A45 Theories of fracture and damage
Full Text: DOI
[1] Abeyaratne, R.; Knowles, J.K., On the kinetics of an austenite – martensite phase transformation induced by impact in a cu – al – ni shape-memory alloy, Acta. mater, 45, 1671-1683, (1997)
[2] Alshits, V.I.; Indenbom, V.L., Mechanisms of dislocation drag, (), 43-111
[3] Atkinson, W.; Cabrera, N., Motion of a frenkel – kontorova dislocation in a one-dimensional crystal, Phys. rev, 138, 3A, A763-A766, (1965)
[4] Braun, O.; Kivshar, Y., Nonlinear dynamics of the frenkel – kontorova model, Phys. rep, 306, 1-108, (1998)
[5] Carpio, A.; Bonilla, L.L., Oscillatory wave fronts in chains of coupled nonlinear oscillators, Phys. rev. E, 67, 056621-056632, (2003)
[6] Cattuno, C.; Costantini, G.; Guidi, T.; Marchesoni, F., Driven kinks in discrete chainsphonon damping, Phys. rev. E, 63, 046611, (2001)
[7] Currie, J.F.; Trullinger, S.E.; Bishop, A.R.; Krumhansl, J.A., Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations, Phys. rev. B, 15, 5567, (1977)
[8] Earmme, Y.Y.; Weiner, J.H., Breakdown phenomena in high-speed dislocations, J. appl. phys, 45, 2, 603-609, (1974)
[9] Earmme, Y.Y.; Weiner, J.H., Dislocation dynamics in the modified frenkel – kontorova model, J. appl. phys, 48, 8, 3317-3331, (1977)
[10] Elmer, C.E., Van Vleck, E.S., 1999. Analysis and computations of travelling wave solutions of bi-stable differential difference equation. Nonlinearity 12, 771-798. · Zbl 0945.35046
[11] Fath, G., Propagation failure of traveling waves in a discrete bi-stable medium, Physica D, 116, 176-190, (1988) · Zbl 0935.35070
[12] Fineberg, J.; Marder, M., Instability in dynamic fracture, Phys. rep, 313, 1-108, (1999)
[13] Freund, L.B., Dynamic fracture mechanics, (1990), Cambridge University Press Cambridge · Zbl 0712.73072
[14] Gao, H., Surface roughening and branching instabilities in dynamic fracture, J. mech. phys. solids, 41, 457-486, (1993)
[15] Hirth, J.P.; Lothe, J., Theory of dislocations, (1972), McGraw-Hill New York
[16] Ishioka, S., Steady motion of a dislocation in a lattice, J. phys. soc. Japan, 34, 2, 462-469, (1973)
[17] Johnston, W.G.; Gilman, J.J., Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. appl. phys, 30, 2, 129-143, (1959)
[18] Kessler, D.A., Levine, H., 2001. Nonlinear lattice model of viscoelastic mode III fracture. Phys. Rev. E 63, p. 016118/1-9.
[19] Kevrekidis, P.; Weinstein, M., Dynamics of lattice kinks, Phys. D, 142, 113-152, (2000) · Zbl 0954.35142
[20] Kresse, O., 2002. Ph.D. Thesis, Department of Aerospace Engineering and Mechanics, University of Minnesota, pp. 1-200.
[21] Kresse, O.; Truskinovsky, L., Mobility of lattice defectsdiscrete and continuum approaches, J. mech. phys. solids, 51, 7, 1305-1332, (2003) · Zbl 1077.74512
[22] Langer, J.S., Models of crack propagation, Phys. rev. A, 46, 3123-3131, (1992)
[23] Langer, J.S.; Lobkovsky, A.E., Critical examination of cohesive zone models in the theory of dynamic fracture, J. mech. phys. solids, 87, 1521-1526, (1998) · Zbl 0971.74009
[24] Marder, M.; Gross, S., Origin of crack tip instabilities, J. mech. phys. solids, 43, 1, 1-48, (1995) · Zbl 0878.73053
[25] Marder, M.; Liu, X., Instability in lattice fracture, Phys. rev. lett, 71, 2417-2420, (1993)
[26] Nabarro, F.R.N., Theory of crystal dislocations, (1987), Dover Publications, Inc New York · Zbl 0046.44804
[27] Nishiyama, Z., Martensitic transformations, (1978), Academic Press New York
[28] Noble, B., Methods based on the wiener – hopf technique for the solution of partial differential equations, (1958), Pergamon Press New York · Zbl 0082.32101
[29] Pechenik, L.; Levine, H.; Kessler, D.A., Steady-state mode I cracks in a viscoelastic triangular lattice, J. mech. phys. solids, 50, 583-613, (2002) · Zbl 1116.74419
[30] Peyrard, M.; Kruskal, M.D., Kink dynamics in the highly discrete sine-Gordon system, Physica D, D14, 88-102, (1984)
[31] Rogula, D., Kinematic resonances in periodic structures, Proc. vibr. problems, Warsaw, 3, 8, 215-237, (1967)
[32] Sharon, E.; Gross, S.P.; Fineberg, J., Local crack branching as a mechanism for instability in dynamic fracture, Phys. rev. lett, 74, 5146-5154, (1995)
[33] Slepyan, L.I., Dynamics of a crack in a lattice, Dokl. akad. nauk SSSR, 258, 1-3, 561-564, (1981) · Zbl 0497.73107
[34] Slepyan, L.I., Dynamic factor in impact, phase transition and fracture, J. mech. phys. solids, 48, 927-960, (2000) · Zbl 0988.74050
[35] Slepyan, L.I., Feeding and dissipative waves in fracture and phase transition. 1. some 1D structures and a square-cell lattice, J. mech. phys. solids, 49, 469-511, (2001) · Zbl 1003.74007
[36] Slepyan, L.I., Feeding and dissipative waves in fracture and phase transition. 2. phase-transition waves, J. mech. phys. solids, 49, 513-550, (2001) · Zbl 1003.74007
[37] Slepyan, L.I., Feeding and dissipative waves in fracture and phase transition. 3. triangular-cell lattice, J. mech. phys. solids, 49, 2839-2875, (2001) · Zbl 1140.74535
[38] Slepyan, L.I., Models and phenomena in fracture mechanics, (2002), Springer Berlin · Zbl 1047.74001
[39] Slepyan, L.I., Ayzenberg-Stepanenko, M.V., 2004. Localized transition waves in bi-stable-bond lattices. J. Mech. Phys. Solids 52 (7), 1447-1479. · Zbl 1159.74390
[40] Slepyan, L.I.; Troyankina, L.V., Fracture wave in a chain structure, J. appl. mech. tech. phys, 25, 6, 921-927, (1984)
[41] Thompson, R., The physics of fracture, Solid state phys, 39, 1-129, (1986)
[42] Truskinovsky, L., Fracture as a phase transition, (), 322-332
[43] Truskinovsky, L.; Vainchtein, A., Peierls – nabarro landscape for martensitic phase transitions, Phys. rev. B, 67, 172103, (2003)
[44] Truskinovsky, L., Vainchtein, A., 2004. Explicit kinetic relation from “first principles”. In: Ogden, R., Gao, D. (Eds.), Mechanics of Material Forces, Advances in Mechanics and Mathematics. Kluwer, Dordrecht, 2003, pp. 1-8, in press. · Zbl 1192.74287
[45] Weiner, J.H., Dislocation velocities in a linear chain, Phys. rev, 136, 3A, A863-A868, (1964) · Zbl 0151.46004
[46] Willis, C.; El-Batanouny, M.; Stancioff, P., Sine-Gordon kinks on a discrete lattice, Hamiltonian formalism. phys. rev. B, 33, 3, 1904-1911, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.