×

zbMATH — the first resource for mathematics

Functional linear regression analysis for longitudinal data. (English) Zbl 1084.62096
Summary: We propose nonparametric methods for functional linear regression which are designed for sparse longitudinal data, where both the predictor and response are functions of a covariate such as time. Predictor and response processes have smooth random trajectories, and the data consist of a small number of noisy repeated measurements made at irregular times for a sample of subjects. In longitudinal studies, the number of repeated measurements per subject is often small and may be modeled as a discrete random number and, accordingly, only a finite and asymptotically nonincreasing number of measurements are available for each subject or experimental unit. We propose a functional regression approach for this situation, using functional principal components analysis, where we estimate the functional principal component scores through conditional expectations. This allows the prediction of an unobserved response trajectory from sparse measurements of a predictor trajectory.
The resulting technique is flexible and allows for different patterns regarding the timing of the measurements obtained for predictor and response trajectories. Asymptotic properties for a sample of \(n\) subjects are investigated under mild conditions, as \(n\to\infty\), and we obtain consistent estimation for the regression function. Besides convergence results for the components of functional linear regression, such as the regression parameter function, we construct asymptotic pointwise confidence bands for the predicted trajectories. A functional coefficient of determination as a measure of the variance explained by the functional regression model is introduced, extending the standard \(R^2\) to the functional case. The proposed methods are illustrated with a simulation study, longitudinal primary biliary liver cirrhosis data and an analysis of the longitudinal relationship between blood pressure and body mass index.

MSC:
62M20 Inference from stochastic processes and prediction
62G08 Nonparametric regression and quantile regression
62H25 Factor analysis and principal components; correspondence analysis
62J05 Linear regression; mixed models
62G20 Asymptotic properties of nonparametric inference
Software:
fda (R)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Besse, P., Cardot, H. and Ferraty, F. (1997). Simultaneous nonparametric regressions of unbalanced longitudinal data. Comput. Statist. Data Anal. 24 255–270. · Zbl 0900.62199
[2] Boularan, J., Ferré, L. and Vieu, P. (1995). A nonparametric model for unbalanced longitudinal data, with application to geophysical data. Comput. Statist. 10 285–298. · Zbl 0936.62045
[3] Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Statist. 30 241–255. · Zbl 1034.62037
[4] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model. Statist. Probab. Lett. 45 11–22. · Zbl 0962.62081
[5] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571–591. · Zbl 1050.62041
[6] Chiou, J.-M., Müller, H.-G. and Wang, J.-L. (2003). Functional quasi-likelihood regression models with smooth random effects. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 405–423. · Zbl 1065.62065
[7] Chiou, J.-M., Müller, H.-G., Wang, J.-L. and Carey, J. R. (2003). A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies. Statist. Sinica 13 1119–1133. · Zbl 1034.62097
[8] Cuevas, A., Febrero, M. and Fraiman, R. (2002). Linear functional regression: The case of fixed design and functional response. Canad. J. Statist. 30 285–300. · Zbl 1012.62039
[9] Cui, H., He, X. and Zhu, L. (2002). On regression estimators with de-noised variables. Statist. Sinica 12 1191–1205. · Zbl 1004.62038
[10] Doksum, K., Blyth, S., Bradlow, E., Meng, X.-L. and Zhao, H. (1994). Correlation curves as local measures of variance explained by regression. J. Amer. Statist. Assoc. 89 571–582. · Zbl 0803.62035
[11] Doksum, K. and Samarov, A. (1995). Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. Ann. Statist. 23 1443–1473. · Zbl 0843.62045
[12] Draper, N. R. and Smith, H. (1998). Applied Regression Analysis , 3rd ed. Wiley, New York. · Zbl 0895.62073
[13] Fan, J. and Lin, S.-K. (1998). Tests of significance when data are curves. J. Amer. Statist. Assoc. 93 1007–1021. · Zbl 1064.62525
[14] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications to longitudinal data. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 62 303–322. · Zbl 04558573
[15] Faraway, J. J. (1997). Regression analysis for a functional response. Technometrics 39 254–261. · Zbl 0891.62027
[16] Ferraty, F. and Vieu, P. (2003). Functional nonparametric statistics: A double infinite dimensional framework. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. N. Politis, eds.) 61–78. North-Holland, Amsterdam. · Zbl 1429.62241
[17] Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis . Wiley, New York. · Zbl 0727.62096
[18] Grenander, U. (1950). Stochastic processes and statistical inference. Ark. Mat. 1 195–277. · Zbl 0058.35501
[19] Grenander, U. (1968). Probabilities on Algebraic Structures , 2nd ed. Almqvist and Wiksell, Stockholm. · Zbl 0131.34804
[20] He, G., Müller, H.-G. and Wang, J.-L. (2000). Extending correlation and regression from multivariate to functional data. In Asymptotics in Statistics and Probability (M. L. Puri, ed.) 197–210. VSP, Leiden.
[21] James, G., Hastie, T. J. and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika 87 587–602. · Zbl 0962.62056
[22] Morrell, C. H., Pearson, J. D. and Brant, L. J. (1997). Linear transformations of linear mixed-effects models. Amer. Statist. 51 338–343.
[23] Murtaugh, P. A., Dickson, E. R., Van Dam, G. M., Malinchoc, M., Grambsch, P. M., Langworthy, A. L. and Gips, C. H. (1994). Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. Hepatology 20 126–134.
[24] Pearson, J. D., Morrell, C. H., Brant, L. J., Landis, P. K. and Fleg, J. L. (1997). Age-associated changes in blood pressure in a longitudinal study of healthy men and women. J. Gerontology A Biol. Sci. Med. Sci. 52 177–183.
[25] Ramsay, J. and Dalzell, C. J. (1991). Some tools for functional data analysis (with discussion). J. Roy. Statist. Soc. Ser. B 53 539–572. · Zbl 0800.62314
[26] Ramsay, J. and Silverman, B. W. (1997). Functional Data Analysis . Springer, New York. · Zbl 0882.62002
[27] Rice, J. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233–243. · Zbl 0800.62214
[28] Rice, J. and Wu, C. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57 253–259. · Zbl 1209.62061
[29] Shock, N. W., Greulich, R. C., Andres, R., Lakatta, E. G., Arenberg, D. and Tobin, J. D. (1984). Normal Human Aging : The Baltimore Longitudinal Study of Aging . NIH Publication No. 84-2450. U.S. Government Printing Office, Washington.
[30] Staniswalis, J.-G. and Lee, J. -J. (1998). Nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 93 1403–1418. · Zbl 1064.62522
[31] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577–590. · Zbl 1117.62451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.