×

Valuation of the reset options embedded in some equity-linked insurance products. (English) Zbl 1083.91511

Summary: This paper proposes a method for valuing American options using a Monte Carlo simulation approach. Our approach can be used to price the reset feature found in some equity-linked insurance contracts. We model this feature as a multiple shout option and give examples based on certain equity-linked insurance products that are very popular in Canada. These contracts are known as segregated fund contracts and the valuation of the embedded options in these contracts has posed serious challenges for actuaries. One of the advantages of the Monte Carlo approach in this connection is that it can be extended to handle different investment assumptions as well as multiple assets. We show how to modify the stochastic mesh model of Broadie and Glasserman (1997) to incorporate quasi-Monte Carlo in the simulation and thus improve the efficiency. We benchmark the efficiency gains in our method using standard American options and multiple shout options.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Acworth P., Monte Carlo and Quasi-Monte-Carlo Methods 1996 (1997)
[2] Avramidis A.N., Proceedings of the 1999 Winter Winter Conference pp 344– (1999)
[3] Avramidis A.N., Efficiency Simulation Techniques for Pricing High-Dimensional American Options (1999)
[4] Barraquand J., Journal of Financial and Quantitative Analysis 30 (3) pp 383– (1995)
[5] Berman L., Journal of Computational Finance 2 (2) pp 79– (1997)
[6] Black F., Journal of Political Economy 81 (3) pp 637– (1973) · Zbl 1092.91524
[7] Boyle P.P., Journal of Economic Dynamics and Control 21 pp 1267– (1997) · Zbl 0901.90007
[8] Boyle P.P., Pricing American Style Options Using Low Discrepancy Mesh Methods (2000)
[9] Boyle P.P., International AFIR Colloquium Proceedings, Australia 1 pp 1– (1997)
[10] Bratley P., ACM Transactions on Mathematical Software 14 pp 88– (1988) · Zbl 0642.65003
[11] Bratley P., ACM Transactions on Modeling and Computer Simulation 2 (3) pp 195– (1992) · Zbl 0846.11044
[12] Broadie M., Journal of Economic Dynamics and Control 21 (8) pp 1323– (1997) · Zbl 0901.90009
[13] Broadie M., A Stochastic Mesh Method for Pricing High-Dimensional American Options (1997)
[14] Broadie M., Probabilistic Constrained Optimization: Methodology and Applications pp 32– (2000)
[15] Caflisch R.E., Journal of Computational Finance 1 (1) pp 27– (1997)
[16] Carr P., Simulating Bermudan Interest Rate Derivatives (1997) · Zbl 0976.91023
[17] Carr P., Simulating American Bond Options in HJM Framework (1998)
[18] Carri√® Re J.F., Insurance: Mathematics and Economics 19 pp 19– (1996) · Zbl 0894.62109
[19] Cheuk T.H.F., The Electronic Journal of Financial Risk (1997)
[20] Devroye L., Non-Uniform Random Variate Generation (1986) · Zbl 0593.65005
[21] Faure H., Acta Arithmetica 41 pp 337– (1982)
[22] Fishman V., Journal of Fixed Income 7 (1) pp 75– (1997)
[23] Fox P., ACM Transactions on Mathematical Software 12 (4) pp 362– (1986) · Zbl 0615.65003
[24] Galanti S., Journal of Derivatives 5 (1) pp 63– (1997)
[25] Grant D., Management Science 43 (11) pp 1589– (1997) · Zbl 0902.90006
[26] Halton J.H., Numerische Mathematik 2 pp 84– (1960) · Zbl 0090.34505
[27] Ibanez A., Monte Carlo Valuation of American Options Through Computation of the Optimal Exercise Frontier (1999)
[28] Joy C., Management Science 42 (6) pp 926– (1996) · Zbl 0880.90006
[29] Mitchell G.T., The Financial Reporter (Society of Actuaries) 36 pp 19– (1998)
[30] Niederreiter H., Monatshefte fur Mathematik 104 pp 273– (1987) · Zbl 0626.10045
[31] Niederreiter H., Random Number Generation and Quasi-Monte Carlo Methods (1992) · Zbl 0761.65002
[32] Ninomiya S., Applied Mathematical Finance 3 pp 1– (1996) · Zbl 1097.91530
[33] Owen A.B., Monte Carlo and Quasi-Monte-Carlo Methods in Scientific Computing: Proceedings of a Conference at the University of Nevada, Las Vegas, June pp 23– (1996)
[34] Owen A.B., Understanding and Applying Value-at-Risk (1997)
[35] Paskov S.H., Mathematics of Derivative Securities (1996)
[36] Paskov S.H., Journal of Portfolio Management 22 (1) pp 113– (1995)
[37] Press W., Numerical Recipes in C, 2. ed. (1992)
[38] Raymar S., Journal of Derivatives 5 (1) pp 7– (1997)
[39] Shukhman B.V., Computer Physics Communications 78 pp 279– (1994) · Zbl 0878.65005
[40] Sobol’ I.M., U.S.S.R Computational Mathematics and Mathematical Physics 7 (4) pp 86– (1967) · Zbl 0185.41103
[41] Tan K.S., Quasi-Monte Carlo Methods: Applications in Finance and Actuarial Science (1998)
[42] Tan K.S., International AFIR Colloquium Proceedings, Australia 2 pp 885– (1997)
[43] Tan K.S., Journal of Economic Dynamics and Control 24 pp 1747– (2000) · Zbl 0967.91059
[44] Tezuka S., ACM Transactions on Modeling and Computer Simulation 3 pp 99– (1993) · Zbl 0846.11045
[45] Thomas B., RISK 6 pp 56– (1993)
[46] Tilley J.A., Transactions of the Society of Actuaries pp 499– (1993)
[47] Windcliff H., Shout Options (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.