zbMATH — the first resource for mathematics

The performance of implicit ocean models on B- and C-grids. (English) Zbl 1083.86002
Summary: Fully-implicit primitive equation ocean models are useful to study the sensitivity of steady ocean flows to parameters, to determine bifurcations of these flows associated with instabilities and to use relatively large time steps in transient flow computations. This paper addresses a problem related to the origin of wiggles occurring in fully-implicit C-grid models. The situation considered is the computation of three-dimensional thermally-driven steady flows in a midlatitude spherical sector. We determine the reason why in a coarse resolution C-grid implicit model, the values of the lateral friction coefficients are restricted to far higher values than for the same B-grid model. The analysis also reveals why the B-grid discretization is superior for the computation of this type of flows.

86A05 Hydrology, hydrography, oceanography
76M12 Finite volume methods applied to problems in fluid mechanics
76E20 Stability and instability of geophysical and astrophysical flows
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI
[1] Adcroft, A.; Hill, C.N.; Marshall, J.C., A new treatment of the Coriolis terms in C-grid models at both high and low resolutions, Monthly weather rev., 127, 1928-1936, (1999)
[2] Arakawa, A.; Lamb, V.R., Computational design of basic dynamical processes of the UCLA general circulation model, Methods comput. phys., 17, 173-265, (1977)
[3] Arakawa, A.; Lamb, V.R., A potential enstrophy and energy conserving scheme for the shallow water equations, Monthly weather rev., 109, 18-36, (1978)
[4] Botta, E.F.F.; Wubs, F.W., MRILU: an effective algebraic multi-level ILU-preconditioner for sparse matrices, SIAM J. matrix anal. appl., 20, 1007-1026, (1999) · Zbl 0937.65057
[5] Bryan, K.; Manabe, S.; Pacanowski, R.C., A global Ocean-atmosphere climate model. part II. the oceanic circulation, J. phys. oceanogr., 5, 30-46, (1975)
[6] Dijkstra, H.A.; Weijer, W., Stability of the global Ocean circulation: the connection of equilibria in a hierarchy of models, J. mar. res., 61, 725-743, (2003)
[7] Dijkstra, H.A.; Öksüzŏglu, H.; Wubs, F.W.; Botta, E.F.F., A fully implicit model of the three-dimensional thermohaline Ocean circulation, J. comput. phys., 173, 685-715, (2001) · Zbl 1051.86004
[8] Dijkstra, H.A.; Te Raa, L.A.; Weijer, W., A systematic approach to determine thresholds of the ocean’s thermohaline circulation, Tellus, 56A, 362-370, (2004)
[9] Enfield, D.B.; Mestas-Nuñe, A.M.; Trimble, P., The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US, Geophys. res. lett., 28, 2077-2080, (2001)
[10] Fox-Rabinovitz, M.S., Computational dispersion properties of horizontal staggered grids for atmospheric and Ocean models, Monthly weather rev., 119, 1624-1639, (1991)
[11] Gent, P.R.; Willebrand, J.; McDougall, T.J.; McWilliams, J.C., Parameterizing eddy-induced tracer transports in Ocean circulation models, J. phys. oceanogr., 25, 463-474, (1995)
[12] Haidvogel, D.B.; Beckmann, A., Numerical Ocean circulation modelling, (1999), Imperial College Press London, UK · Zbl 0932.76001
[13] Jamart, B.M.; Ozer, J., Numerical boundary layers and spurious residual flows, J. geophys. res., 91, 10,621-10,631, (1986)
[14] Keller, H.B., Numerical solution of bifurcation and nonlinear eigenvalue problems, () · Zbl 0581.65043
[15] Pacanowski, R.C., Griffies, S.M., 2000. MOM 3.0 User Manual. GFDL/NOAA Report.
[16] Sadourny, R., The dynamics of finite-difference models of shallow-water equations, J. atmos. sci., 32, 680-689, (1973)
[17] Seydel, R., Practical bifurcation and stability analysis: from equilibrium to chaos, (1994), Springer-Verlag New York, USA · Zbl 0806.34028
[18] Te Raa, L.A.; Dijkstra, H.A., Instability of the thermohaline Ocean circulation on interdecadal time scales, J. phys. oceanogr., 32, 138-160, (2002)
[19] Te Raa, L.A.; Gerrits, J.; Dijkstra, H.A., Identification of the mechanism of interdecadal variability in the north atlantic Ocean, J. phys. oceanogr., 34, 2792-2807, (2004)
[20] Wajsowicz, R.C., Adjustment of the Ocean under buoyancy forces. part II: the role of planetary waves, J. phys. oceanogr., 16, 2115-2136, (1986)
[21] Wajsowicz, R.C., Free planetary waves in finite-difference models, J. phys. oceanogr., 16, 773-789, (1986)
[22] Wajsowicz, R.C.; Gill, A.E., Adjustment of the Ocean under buoyancy forces. part I: the role of Kelvin waves, J. phys. oceanogr., 16, 2097-2112, (1986)
[23] Weijer, W.; Dijkstra, H.A.; Öksüzŏglu, H.; Wubs, F.W.; De Niet, A.C., A fully-implicit model of the global Ocean circulation, J. comp. phys., 192, 452-470, (2003) · Zbl 1032.76557
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.