zbMATH — the first resource for mathematics

Error bounds for rational quadrature formulae of analytic functions. (English) Zbl 1083.65032
It is well known that rational quadrature rules are exact in a vectorial space of rational functions. The paper is concerned with the errors commited when one uses such rules to approximate the integral of a function which is analytic on some neighborhood of the set of integration. A strict bound for the error is obtained (Theorem 1). Numerical examples are also presented.

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
PDF BibTeX Cite
Full Text: DOI
[1] Achieser, N.I.: Theory of Approximation. Dover, New York 1992 · Zbl 0072.28403
[2] Ambroladze, A., Wallin, H.: Extremal polynomials with preassigned zeros and rational approximants. Constr. Approx. 14, 209–229 (1998) · Zbl 0891.42013
[3] van Assche, W., Vanherwegen, I.: Quadrature formulas based on rational interpolation. Math. Comp. 61, 765–783 (1993) · Zbl 0791.65011
[4] Bello Hernández, M., de la Calle Ysern, B., López Lagomasino, G.: Generalized Stieltjes polynomials and rational Gauss-Kronrod quadrature. Constr. Approx. 20, 249–265 (2004) · Zbl 1056.42017
[5] Brent, R.P.: Algorithms for Minimization Without Derivatives. Dover, New York 2002 · Zbl 1009.90133
[6] Bultheel, A., Díaz-Mendoza, C., González-Vera, P., Orive, R.: On the convergence of certain Gauss-type quadrature formulas for unbounded intervals. Math. Comp. 69, 721–747 (2000) · Zbl 0941.41015
[7] Cala Rodríguez, F., López Lagomasino, G.: Multipoint rational approximants with preassigned poles. J. Math. Anal. Appl. 256, 142–161 (2001) · Zbl 1160.41305
[8] Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod quadrature rules. Math. Comp. 69, 1035–1052 (2000) · Zbl 0947.65022
[9] Conway, J.B.: Functions of One Complex Variable I. Springer-Verlag, New York 1978 · Zbl 0424.68009
[10] Daruis, L., González-Vera, P.: Interpolatory quadrature formulas on the unit circle for Chebyshev weight functions. Numer. Math. 90, 641–664 (2002) · Zbl 0993.41017
[11] Ehrich, S.: Gauss-Kronrod quadrature error estimates for analytic functions. Zeitschr. f. Angew. Mathematik und Mechanik. 74, T691–T693 (1995)
[12] Gautschi, W.: Gauss-type quadrature rules for rational functions. In: Numerical Integration IV, H. Brass, G. Hämmerlin, (eds.), 112, International Series of Numerical Mathematics Birkhäuser, Basel 1993, pp. 111–130 · Zbl 0802.65019
[13] Gautschi, W.: Algorithm 793: GQRAT – Gauss quadrature for rational functions. ACM Trans. Math. Software 25, 213–239 (1999) · Zbl 0961.65019
[14] Gautschi, W., Gori, L., Lo Cascio, M.L.: Quadrature rules for rational functions. Numer. Math. 86, 617–633 (2000) · Zbl 0968.65014
[15] González-Vera, P., Jiménez Paiz, M., Orive, R., López Lagomasino, G.: On the convergence of quadrature formulas connected with multipoint Padé-type approximation. J. Math. Anal. Appl. 202, 747–775 (1996) · Zbl 0856.41027
[16] Laurie, D.P.: Calculation of Gauss-Kronrod quadrature rules. Math. Comp. 66, 1133–1145 (1997) · Zbl 0870.65018
[17] López Lagomasino, G., Illán González, J.: A note on generalized quadrature formulas of Gauss-Jacobi type. In: Constructive Theory of Functions ’84, V. Sendov, V. Popov, eds., Publ. House Bulgarian Acad. Sci., Sofia, 1984, pp. 513–518
[18] Min, G.: Lagrange interpolation and quadrature formula in rational systems. J. Approx. Theory 95, 123–145 (1998) · Zbl 0912.41003
[19] Notaris, S.E.: Error bounds for Gauss-Kronrod quadrature of analytic functions. Numer. Math. 64, 371–380 (1993) · Zbl 0793.41024
[20] Rivlin, T.J.: The Chebyshev Polynomials. John Wiley & Sons, New York 1974 · Zbl 0299.41015
[21] Rovba, E.A.: Quadrature formulae of interpolatory rational type. Dokl. Nats. Akad. Nauk Belarusi 40, (1996) 42–46 (in Russian) · Zbl 1057.41503
[22] Rudin, W.: Real and Complex Analysis. Mc Graw Hill, New York 1966 · Zbl 0142.01701
[23] von Sydow, B.: Error estimates for Gaussian quadrature formulae. Numer. Math 29, 59–64 (1977) · Zbl 0351.65005
[24] Walsh, J.: Interpolation and Approximation by Rational Functions in the Complex Domain. Coll. Publ. XX, Amer. Math. Soc. Providence, Rhode Island 1969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.