zbMATH — the first resource for mathematics

Some remarks on first passage of Lévy processes, the American put and pasting principles. (English) Zbl 1083.60034
Let \(X= (X_t)\) be a Lévy process defined on a filtered probability space \((\Omega,{\mathcal F},({\mathcal F}_t),P)\). For given constants \(K> 0\) and \(r\geq 0\) consider the following American put optimal stopping problem: \[ v(x)= \sup_\tau\,E_x[e^{-r\tau}(K- e^{X_\tau})^+]\tag{*} \] (the supremum taken over all \(({\mathcal F}_t)\)-stopping times \(\tau\)). Various authors [e.g. E. Mordecki, Finance Stoch. 6, No. 4, 473–493 (2002; Zbl 1035.60038)] have shown that for many Lévy processes (*) is solved by a strategy of the form \(\tau^*= \text{inf}\{t\geq 0: X_t< x^*\}\) for a specific value \(x^*<\log K\) so that \[ v(x)= KE_x[e^{-r\tau^*}]- E_x[e^{-r\tau^*+ X_{\tau^*}}]. \] The aim of the present paper is to comprehensively link a variety of identities for first passage problems of different Lévy processes and their connection to the American put optimal stopping problem and to explain precisely when smooth pasting is absent. In particular, it is thus possible to give alternative proofs of results obtained in Mordecki’s paper.

60G40 Stopping times; optimal stopping problems; gambling theory
60J75 Jump processes (MSC2010)
91B70 Stochastic models in economics
60G51 Processes with independent increments; Lévy processes
Full Text: DOI arXiv
[1] Almendral, A. (2005). Numerical valuation of American options under the CGMY process. In Exotic Option Pricing and Advanced Lévy Models (A. E. Kyprianou, W. Schoutens and P. Wilmott, eds.). Wiley, New York.
[2] Almendral, A. and Oosterlee, C. (2003). On American options under the Variance Gamma process. Preprint. Delft Univ. of Technology. · Zbl 1160.91346 · doi:10.1080/13504860600724885
[3] Asmussen, S. (2000). Ruin Probabilities. World Scientific, River Edge, NJ. · Zbl 0960.60003
[4] Asmussen, S., Avram, F. and Pistorius, M. (2004). Russian and American put options under exponential phase-type Lévy models. Stochastic Process. Appl. 109 79–111. · Zbl 1075.60037 · doi:10.1016/j.spa.2003.07.005
[5] Avram F., Chan, T. and Usabel, M. (2002). On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr’s approximation for American puts. Stochastic Process. Appl. 100 75–107. · Zbl 1060.91061 · doi:10.1016/S0304-4149(02)00104-7
[6] Avram, F., Kyprianou, A. E. and Pistorius, M. R. (2004). Exit problems for spectrally negative Lévy processes and applications to Russian, American and Canadized options. Ann. Appl. Probab. 14 215–238. · Zbl 1042.60023 · doi:10.1214/aoap/1075828052
[7] Bertoin, J. (1996). Lévy Processes . Cambridge Univ. Press. · Zbl 0861.60003
[8] Bertoin, J. (1997). Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121 345–354. · Zbl 0883.60069
[9] Bertoin, J. (1997). Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab. 7 156–169. · Zbl 0880.60077 · doi:10.1214/aoap/1034625257
[10] Boyarchenko, S. I. and Levendorski\?, S. Z. (1998). Models of investment under uncertaintly when shocks are non-Gaussian. Working paper series EERC, 98/02, EERC/Eurasia Foundation Moscow.
[11] Boyarchenko, S. I. and Levendorski\?, S. Z. (1999). Pricing of a perpetual American put for truncated Lévy processes. Unpublished manuscript.
[12] Boyarchenko, S. I. and Levendorski\?, S. Z. (2002). Perpetual American options under Lévy processes. SIAM J. Control Optim. 40 1663–1696. · Zbl 1025.60021 · doi:10.1137/S0363012900373987
[13] Boyarchenko, S. I. and Levendorski\?, S. Z. (2002a). Non-Gaussian Merton–Black–Scholes Theory. World Scientific Publishing Co., River Edge, NJ. · Zbl 0997.91031
[14] Boyarchenko, S. I. and Levendorski\?, S. Z. (2004). American options: The EPV pricing model. Preprint. Available at http://ssrn.com/abstract=547863.
[15] Chan, T. (2000). American options driven spectrally by one sided Lévy processes. Unpublished manuscript. [See also (2005) Exotic Option Pricing and Advanced Lévy Models (A. E. Kyprianou, W. Schoutens and P. Wilmott, eds.) Wiley, New York.]
[16] Chan, T. (2004). Some applications of Lévy processes in insurance and finance. Finance . Revue de l’Association Francaise de Finance 25 71–94.
[17] Chesney, M. and Jeanblanc, M. (2004). Pricing American currency options in an exponential Lévy model. Appl. Math. Fin. 11 207–225. · Zbl 1066.91038 · doi:10.1080/1350486042000249336
[18] Cont, R. and Tankov, P. (2004). Financial Modelling With Jump Processes. Chapman and Hall, Boca Raton, FL. · Zbl 1052.91043 · doi:10.1201/9780203485217
[19] Darling, D. A., Liggett, T. and Taylor, H. M. (1972). Optimal stopping for partial sums. Ann. Math. Statist. 43 1363–1368. · Zbl 0244.60037 · doi:10.1214/aoms/1177692491
[20] Gapeev, P. V. (2002). Problems of the sequential discrimination of hypotheses for a compound Poisson process with exponential jumps. Uspekhi Mat. Nauk 57 171–172. (In Russian.) · Zbl 1218.62080 · doi:10.1070/RM2002v057n06ABEH000577
[21] Gerber, H. U. and Shiu, E. S. W. (1994). Martingale approach to pricing perpetual American options. Astin Bull. 24 195–220.
[22] Greenwood, P. E. and Pitman, J. W. (1980). Fluctuation identities for Lévy processes and splitting at the maximum. Adv. in Appl. Probab. 12 893–902. · Zbl 0443.60037 · doi:10.2307/1426747
[23] Hirsa, A. and Madan, D. B. (2002). Pricing American options under variance gamma.
[24] Kyprianou, A. E. and Loeffen, R. (2005). Lévy processes in finance distinguished by their course and fine path properties. In Exotic Option Pricing and Advanced Lévy Processes (A. E. Kyprianou, W. Schoutens and P. Wilmott, eds.). Wiley, New York.
[25] Kyprianou, A. E. and Pistorius, M. R. (2003). Perpetual options and Canadization through fluctuation theory (with Martijn Pistorius). Ann. Appl. Probab. 13 1077–1098. · Zbl 1039.60044 · doi:10.1214/aoap/1060202835
[26] Matache, A. M., Nitsche, P. A. and Schwab, C. (2003). Wavelet Galerkin pricing of American options on Lévy driven assets. · Zbl 1134.91450 · doi:10.1080/14697680500244478
[27] Mordecki, E. (1999). Optimal stopping for a diffusion with jumps. Finance Stoch. 3 227–236. · Zbl 0926.60034 · doi:10.1007/s007800050060
[28] Mordecki, E. (2002). Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6 473–493. · Zbl 1035.60038 · doi:10.1007/s007800200070
[29] Mordecki, E. (2002). The distribution of the maximum of a Lévy process with positive jumps of phase-type. Theory Stoch. Process. 8 309–316. · Zbl 1026.60043
[30] Percheskii, E. A. and Rogozin, B. A. (1969). On the joint distribution of rnadom variables associated with fluctuations of a process with independent increments. Theory Probab. Appl. 14 410–423. · Zbl 0194.49001
[31] Peskir, G. (2001). Principles of Optimal Stopping and Free-Boundary Problems. Lecture Notes Series 68 . Dept. Math., Univ. Aarhus. · Zbl 0994.60045
[32] Peskir, G. and Shiryaev, A. N. (2000). Sequential testing problems for Poisson processes. Ann. Statist. 28 837–859. · Zbl 1081.62546 · doi:10.1214/aos/1015952000 · euclid:aos/1015952000
[33] Peskir, G. and Shiryaev, A. N. (2002). Solving the Poisson disorder problem. Advances in Finance and Stochastics 295–312. Springer, Berlin. · Zbl 1009.60033
[34] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge Univ. Press. · Zbl 0973.60001
[35] Schoutens, W. (2003). Lévy Processes in Finance : Pricing Financial Derivatives . Wiley, New York.
[36] Shiryaev, A. N. (1978). Optimal Stopping Rules. Springer, New York. · Zbl 0391.60002
[37] Winkel, M. (2005). Electronic foreign-exchange markets and passage events of independent subordinators. J. Appl. Probab. 42 138–152. · Zbl 1078.60035 · doi:10.1239/jap/1110381376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.