zbMATH — the first resource for mathematics

Temporal scenario modelling and recognition based on possibilistic logic. (English) Zbl 1082.68820
Summary: We propose a new approach for the modelling and recognition of temporal scenarios. A scenario is represented by three different structures. The first one models the logical dependency between the elements of the scenario, using possibilistic logic, while the second one is the minimal temporal graph representing all temporal constraints between the events. The third structure explains the way the matching between observations and scenarios has to be done. The consistency between the three structures is ensured.

68T27 Logic in artificial intelligence
68T30 Knowledge representation
68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI
[1] Allen, J.F., Towards a general theory of action and time, Artificial intelligence, 23, 123-154, (1984) · Zbl 0567.68025
[2] Benferhat, S.; Dubois, D.; Lang, J.; Prade, H., Hypothetical reasoning in possibilistic logic: basic notions, applications and implementation issues, ()
[3] Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie, G., G. verfaillie, semiring-based CSPs and valued CSPs: frameworks, properties and comparison, Constraints, 4, 3, (1999) · Zbl 0946.68143
[4] Z. Chen, Représentation et gestion des connaissances temporelles et incertaines, Ph.D. Thesis, Univ, Paris XI, 1993
[5] E. Collain, Technique des gabarits, Technical Report RCC/DT/SES/15-233/EC, Thomson-CSF, 1995
[6] Dechter, R.; Meiri, I.; Pearl, J., Temporal constraint networks, Artificial intelligence, 49, 61-95, (1991) · Zbl 0737.68070
[7] Mc Dermott, D., A temporal logic for reasoning about processes and plans, Cognitive sci., 6, 2, 101-155, (1982)
[8] C. Dousson, Suivi d’évolutions et reconnaissances de chroniques, PhD Thesis, LAAS, Toulouse, France, 1994
[9] Dubois, D.; Lang, J.; Prade, H., Timed possibilistic logic, Fundamenta informaticae, 15, 211-234, (1991) · Zbl 0745.03019
[10] Dubois, D.; Lang, J.; Prade, H., Possibilistic logic, (), 439-513
[11] Dubois, D.; Prade, H., A review of fuzzy set aggregation connectives, Inform. sci., 36, 85-121, (1985) · Zbl 0582.03040
[12] Dubois, D.; Prade, H., Weighted minimum and maximum operations in fuzzy set theory, Inform. sci., 39, 205-210, (1986) · Zbl 0605.03021
[13] Dubois, D.; Prade, H., Fuzzy numbers: an overview, (), 3-39
[14] Dubois, D.; Prade, H., Processing fuzzy temporal knowledge, IEEE trans. systems man cybernet., 19, 4, 729-744, (1989)
[15] Dubois, D.; Prade, H., Resolution principle in possibilistic logic, Internat. J. approx. reason., 4, 1, 1-21, (1990) · Zbl 0697.68083
[16] Barès, M., Xplans: case-based reasoning for plan recognition, Appl. artificial intelligence, 8, 4, 617-643, (1994)
[17] V.Eude, Modélisation spatio-temporelle floue pour la reconnaissance d’activités militaires, Ph.D. Thesis, Univ. Paris VI, 1998
[18] H. Fargier, Problèmes de satisfaction de contraintes flexibles: application à l’ordonnancement de production, Ph.D. Thesis, Univ. Paul Sabatier, Toulouse, 1994
[19] Fontaine, D.; Ramaux, N., An approach by graphs for the recognition of temporal scenarios, IEEE trans. systems man cybernet., (June 1998)
[20] Ghallab, M., Représentation et gestion de relations temporelles, (), 3-20
[21] Godo, L.; Vila, L., Représentation et gestion de relations temporelles, (), 1916-1922
[22] Grabisch, M.; Nifle, A., Reconnaissance de scénarios temporels fondés sur la logique possibiliste, ()
[23] Grabisch, M.; Orlovski, S.A.; Yager, R.R., Fuzzy aggregation of numerical preferences, (), 31-68 · Zbl 0929.91013
[24] Kautz, H.A.; Ladkin, P.B., Integrating metric and qualitative temporal reasoning, (), 241-246
[25] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Dordrecht · Zbl 0972.03002
[26] F. Laburthe, P. Savéant, S. de Givry, Eclair: A library of constraints over finite domains, Technical Report ATS 98-2, Thomson-CSF/LCR, Orsay, France, 1998
[27] Lakowski, S.J.; Hofmann, E.J., Script-based reasoning for situation monitoring, (), 819-823
[28] Marin; Barro; Bosch; Mira, Modeling the representation of time from a fuzzy perspective, Cybernetics and systems, 25, 217-231, (1994) · Zbl 0809.68111
[29] Montanari, U., Network of constraints: fundamental properties and applications to picture processing, Inform. sci., 7, 95-132, (1974) · Zbl 0284.68074
[30] Sandri, S.; Godo, L., Treatment of temporal information in possibilistic logic with fuzzy constants, (), 561-565
[31] Schiex, T.; Fargier, H.; Verfaillie, G., Valued constraint satisfaction problems: hard and easy problems, ()
[32] Schwalb, E.; Vila, L., Temporal constraints: A survey, Constraints, 2, 129-149, (1998) · Zbl 0911.68186
[33] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland New York · Zbl 0546.60010
[34] S. Steunou, Un apport méthodologique et formel pour le développement de systèmes à base de connaissance temps réel, Ph.D. Thesis, Univ. Paris VI, 1992
[35] Wainer, J.; Sandri, S., Fuzzy temporal/categorical information in diagnosis, J. intelligent information systems, 13, 9-26, (1999)
[36] Yager, R.R., On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE trans. systems man cybernet., 18, 183-190, (1988) · Zbl 0637.90057
[37] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.