×

zbMATH — the first resource for mathematics

Compliance of the token-bucket model with Markovian traffic. (English) Zbl 1082.60088
Token bucket mechanisms are applied to smooth bursty incoming traffic at the entrance node of a network. The stream of incoming packets to some network is modeled by a fluid queue with a MAP arrival process. The token bucket is filled continuously until reaching the capacity. The aim of the paper is to derive the Laplace transform of the time for the arrival process to first meeting the empty bucket state at arrival.

MSC:
60K25 Queueing theory (aspects of probability theory)
60J25 Continuous-time Markov processes on general state spaces
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/49.700908 · doi:10.1109/49.700908
[2] Badescu A., Scandinavian Actuarial Journal
[3] da Silva Soares A., Performance evaluation (2003)
[4] DOI: 10.1016/S0166-5316(03)00062-2 · doi:10.1016/S0166-5316(03)00062-2
[5] Faddeev D.K., Computational Methods of Linear Algebra (1963)
[6] DOI: 10.1142/9789812777164_0011 · doi:10.1142/9789812777164_0011
[7] Koucheryavy Y., Proceedings of the 16th Nordic Teletraffic Seminar (2002)
[8] DOI: 10.1137/1.9780898719734 · Zbl 0922.60001 · doi:10.1137/1.9780898719734
[9] Ramaswami V., Teletraffic Engineering in a Competitive World pp 1019– (1999)
[10] Remiche , M.A. phase-type planar point processes : Analysis and application to mobile telecommunications performance studies. PhD thesis , Université Libre de Bruxelles , Belgium , 1999 .
[11] DOI: 10.1214/aoap/1177005065 · Zbl 0806.60052 · doi:10.1214/aoap/1177005065
[12] DOI: 10.1023/A:1010962516045 · Zbl 0997.90025 · doi:10.1023/A:1010962516045
[13] Tang P., Proc. of the INFOCOM 1999 pp 51– (1999)
[14] DOI: 10.1016/S0167-6687(99)00029-3 · Zbl 1028.91561 · doi:10.1016/S0167-6687(99)00029-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.