×

zbMATH — the first resource for mathematics

Perturbative renormalization by flow equations. (English) Zbl 1081.81543

MSC:
81T17 Renormalization group methods applied to problems in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1103/PhysRev.75.486 · Zbl 0032.23702
[2] DOI: 10.1103/PhysRev.75.1736 · Zbl 0033.14201
[3] DOI: 10.1007/BF02392399 · Zbl 0081.43302
[4] Hepp K., Lecture Notes in Physics, in: Théorie de la Renormalisation (1969)
[5] Zimmermann W., Lectures on Elementary Particles and Quantum Field Theory 1 (1970)
[6] DOI: 10.1103/RevModPhys.21.434 · Zbl 0037.12503
[7] Speer E., Generalized Feynman Amplitudes (1969) · Zbl 0172.27301
[8] DOI: 10.1016/0550-3213(72)90279-9
[9] Bollini C. G., Phys. Lett. 40 pp 566–
[10] DOI: 10.1007/BF01609069
[11] DOI: 10.1007/BF01609070
[12] Wightman A. S., Renormalization Theory, Erice 1975 (1976)
[13] DOI: 10.1007/BF01645676 · Zbl 0192.61203
[14] DOI: 10.1007/BF01609353 · Zbl 0323.46070
[15] DOI: 10.1016/0550-3213(71)90395-6
[16] DOI: 10.1016/0550-3213(71)90139-8
[17] DOI: 10.1016/S0550-3213(72)80021-X
[18] DOI: 10.1103/PhysRevB.4.3174 · Zbl 1236.82017
[19] DOI: 10.1103/PhysRevB.4.3184 · Zbl 1236.82016
[20] Wilson K. G., Phys. Rep. 12 pp 75–
[21] DOI: 10.1007/BF01208817
[22] DOI: 10.1007/BF01464282 · Zbl 0594.58060
[23] DOI: 10.1515/9781400862085
[24] DOI: 10.1103/RevModPhys.57.471
[25] J. S. Feldman, Lecture Notes in Physics (Springer, 1988) p. 312.
[26] DOI: 10.1016/0550-3213(84)90287-6
[27] DOI: 10.1007/BF01256494 · Zbl 0699.58067
[28] Keller G., Helv. Phys. Acta 65 pp 32–
[29] DOI: 10.1007/BF02096544 · Zbl 0755.60100
[30] DOI: 10.1007/BF02096643 · Zbl 0793.47061
[31] Wieczerkowski Ch., Comm. Math. Phys. 120 pp 148–
[32] Keller G., Helv. Phys. Acta 66 pp 453–
[33] DOI: 10.1007/BF02099780 · Zbl 0796.60104
[34] DOI: 10.1007/BF02101931 · Zbl 0793.60113
[35] DOI: 10.1016/0370-2693(91)91692-O
[36] DOI: 10.1007/BF02099368 · Zbl 0838.60093
[37] DOI: 10.1006/aphy.1995.1093
[38] Keller G., Helv. Phys. Acta 70 pp 247–
[39] DOI: 10.1007/s002200050028 · Zbl 0946.81051
[40] DOI: 10.1007/PL00001039 · Zbl 1019.81034
[41] DOI: 10.1007/978-3-662-03873-4
[42] DOI: 10.1016/0550-3213(93)90588-G
[43] DOI: 10.1016/0370-2693(93)90726-X
[44] DOI: 10.1016/0550-3213(94)90239-9
[45] DOI: 10.1016/0550-3213(94)90335-2 · Zbl 0990.81569
[46] DOI: 10.1016/0550-3213(94)00569-Z · Zbl 1052.81569
[47] DOI: 10.1016/0550-3213(94)90095-7 · Zbl 0990.81552
[48] DOI: 10.1016/S0550-3213(97)00740-2 · Zbl 0947.81044
[49] DOI: 10.1016/S0550-3213(98)00458-1 · Zbl 0956.81049
[50] DOI: 10.1016/0370-2693(96)00411-X
[51] DOI: 10.1142/S0217751X0100461X · Zbl 0982.81035
[52] DOI: 10.1016/0370-2693(94)90365-4
[53] DOI: 10.1007/s002880050073
[54] DOI: 10.1016/S0550-3213(98)00542-2
[55] DOI: 10.1016/0550-3213(94)90543-6
[56] DOI: 10.1016/0550-3213(94)90278-X
[57] DOI: 10.1103/PhysRevD.56.7893
[58] DOI: 10.1103/PhysRevD.66.025006
[59] DOI: 10.1142/S0217751X02010418
[60] DOI: 10.1088/0264-9381/19/3/304 · Zbl 0993.83012
[61] DOI: 10.1016/S0370-1573(00)00137-X · Zbl 0969.81596
[62] Kopper Ch., Renormierungstheorie mit Flussgleichungen (1998)
[63] DOI: 10.1007/978-1-4612-4728-9
[64] Hida T., Stationary Stochastic Processes (1970) · Zbl 0214.16401
[65] DOI: 10.1142/0162
[66] DOI: 10.1007/s00023-002-8623-8 · Zbl 1027.81022
[67] DOI: 10.1103/PhysRev.118.838 · Zbl 0098.20403
[68] DOI: 10.1016/0370-1573(87)90121-9
[69] Bourbaki N., Fonctions d’une variable réelle (1976)
[70] DOI: 10.1103/PhysRevD.6.2145
[71] DOI: 10.1103/PhysRevD.7.2943
[72] DOI: 10.1007/BF01907030 · Zbl 0221.35008
[73] Piguet O., Algebraic Renormalization (1995) · Zbl 0845.58069
[74] Zinn–Justin J., Quantum Field Theory and Critical Phenomena (1993) · Zbl 0865.00014
[75] DOI: 10.1007/BF01090719
[76] DOI: 10.1016/0550-3213(71)90297-5
[77] DOI: 10.1007/BF01614158
[78] DOI: 10.1016/0003-4916(76)90156-1
[79] Faddeev L. D., Gauge Fields: Introduction to Quantum Theory (1980) · Zbl 0486.53052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.