×

Quantum secure conditional direct communication via EPR pairs. (English) Zbl 1081.81508

Summary: Two schemes for quantum secure conditional direct communication are proposed, where a set of EPR pairs of maximally entangled particles in Bell states, initially made by the supervisor Charlie, but shared by the sender Alice and the receiver Bob, functions as quantum information channels for faithful transmission. After insuring the security of the quantum channel and obtaining the permission of Charlie (i.e., Charlie is trustworthy and cooperative, which means the ”conditional” in the two schemes), Alice and Bob begin their private communication under the control of Charlie. In the first scheme, Alice transmits secret message to Bob in a deterministic manner with the help of Charlie by means of Alice’s local unitary transformations, both Alice and Bob’s local measurements, and both of Alice and Charlie’s public classical communication. In the second scheme, the secure communication between Alice and Bob can be achieved via public classical communication of Charlie and Alice, and the local measurements of both Alice and Bob. The common feature of these protocols is that the communications between two communication parties Alice and Bob depend on the agreement of the third side Charlie. Moreover, transmitting one bit secret message, the sender Alice only needs to apply a local operation on her one qubit and send one bit classical information. We also show that the two schemes are completely secure if quantum channels are perfect.

MSC:

81P68 Quantum computation
94A60 Cryptography
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. H. Bennett and G. Brassard, Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, Bangalore, India (IEEE Press, 1984) pp. 175–179.
[2] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] DOI: 10.1103/PhysRevLett.68.3121 · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[4] DOI: 10.1103/PhysRevLett.68.557 · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[5] DOI: 10.1103/PhysRevLett.69.2881 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[6] DOI: 10.1103/PhysRevLett.75.1239 · Zbl 1020.81548 · doi:10.1103/PhysRevLett.75.1239
[7] DOI: 10.1103/PhysRevA.51.1863 · doi:10.1103/PhysRevA.51.1863
[8] DOI: 10.1103/PhysRevLett.79.2383 · Zbl 0944.81010 · doi:10.1103/PhysRevLett.79.2383
[9] DOI: 10.1103/PhysRevLett.81.3018 · doi:10.1103/PhysRevLett.81.3018
[10] DOI: 10.1016/S0375-9601(98)00358-2 · Zbl 0972.94027 · doi:10.1016/S0375-9601(98)00358-2
[11] DOI: 10.1103/PhysRevLett.85.5635 · doi:10.1103/PhysRevLett.85.5635
[12] DOI: 10.1103/PhysRevA.61.052312 · doi:10.1103/PhysRevA.61.052312
[13] DOI: 10.1103/PhysRevA.65.032302 · doi:10.1103/PhysRevA.65.032302
[14] DOI: 10.1103/PhysRevA.65.022317 · doi:10.1103/PhysRevA.65.022317
[15] DOI: 10.1080/09500349514551001 · doi:10.1080/09500349514551001
[16] DOI: 10.1007/s00145-004-0142-y · Zbl 1084.68047 · doi:10.1007/s00145-004-0142-y
[17] DOI: 10.1103/PhysRevA.69.034301 · doi:10.1103/PhysRevA.69.034301
[18] DOI: 10.1103/PhysRevLett.92.077902 · doi:10.1103/PhysRevLett.92.077902
[19] DOI: 10.1103/PhysRevA.59.1829 · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[20] DOI: 10.1103/PhysRevA.60.157 · doi:10.1103/PhysRevA.60.157
[21] DOI: 10.1103/PhysRevA.62.054303 · doi:10.1103/PhysRevA.62.054303
[22] DOI: 10.12693/APhysPolA.101.357 · doi:10.12693/APhysPolA.101.357
[23] DOI: 10.1103/PhysRevLett.89.187902 · doi:10.1103/PhysRevLett.89.187902
[24] DOI: 10.1103/PhysRevLett.90.157901 · doi:10.1103/PhysRevLett.90.157901
[25] DOI: 10.1103/PhysRevA.68.042317 · doi:10.1103/PhysRevA.68.042317
[26] DOI: 10.1103/PhysRevA.69.052319 · doi:10.1103/PhysRevA.69.052319
[27] DOI: 10.1140/epjb/e2004-00296-4 · doi:10.1140/epjb/e2004-00296-4
[28] Gao T., Nuovo Cimento B 119 pp 313–
[29] DOI: 10.1088/0305-4470/38/25/011 · Zbl 1073.81534 · doi:10.1088/0305-4470/38/25/011
[30] Gao T., Z. Naturforsch 59 pp 597–
[31] Gao T., Chin. Phys. 14 pp 893–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.