×

zbMATH — the first resource for mathematics

A phenomenological scaling approach for heat transport in nano-systems. (English) Zbl 1081.80001
Summary: A phenomenological approach of heat transfer in nano-systems is proposed, on the basis of a continued-fraction expansion of the thermal conductivity, obtained within the framework of extended irreversible thermodynamics. Emphasis is put on the transition from the diffusive, collision-dominated heat transport to the ballistic heat transport, as a function of the mean free path and the length of the system.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
82B35 Irreversible thermodynamics, including Onsager-Machlup theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Joshi, A.; Majumbar, A., Transient ballistic and diffusive phonon heat transport in thin films, J. appl. phys., 74, 31-39, (1993)
[2] Hill, T.L., Thermodynamics of small systems, (1994), Dover New York · Zbl 0115.23003
[3] Chen, G., Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, J. heat transfer., 118, 539-545, (1996)
[4] Jou, D.; Casas-Vázquez, J.; Lebon, G., Extended irreversible thermodynamics, Rep. prog. phys., 51, 1105, (1988), Springer Berlin, 62 (1999) 1035 · Zbl 0974.74003
[5] Jou, D.; Casas-Vázquez, J.; Criado-Sancho, M., Thermodynamics of fluids under flow, (2000), Springer Berlin · Zbl 0806.76002
[6] Tzou, D.Y., Macro to microscale heat transfer. the lagging behaviour, (1997), Taylor and Francis New York
[7] Aoki, H.; Kusnezov, D., Fermi-pasta-Ulam model: boundary jumps, fourier’s law, and scaling, Phys. rev. lett., 86, 4029-4032, (2001)
[8] Giardinà, C.; Livi, R.; Politi, A.; Vassalli, M., Finite thermal conductivity in 1D lattices, Phys. rev. lett., 84, 2144-2147, (2000)
[9] Garrido, P.L.; Hurtado, P.I.; Nadrowski, B., Simple one-dimensional model of heat conduction which obeys fourier’s law, Phys. rev. lett., 86, 5486-5489, (2001)
[10] Dhar, A., Heat conduction in the disordered harmonic chain revisited, Phys. rev. lett., 86, 5882-5885, (2001)
[11] Chapman, S.; Cowling, T.G., The mathematical theory of non-uniform gases, (1970), Cambridge University Press Cambridge · Zbl 0098.39702
[12] Dedeurwaerdere, T.; Casas-Vázquez, J.; Jou, D.; Lebon, G., Foundations and applications of a mesoscopic thermodynamic theory of fast phenomena, Phys. rev. E, 53, 498-506, (1996)
[13] Dreyer, W.; Struchtrup, H., Heat pulse experiments revisited, Continuum mech. thermodyn., 5, 3-50, (1993)
[14] Chen, G., Ballistic-diffusive equations for transient heat conduction from nano to macroscales, J. heat transfer, 124, 320-328, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.