zbMATH — the first resource for mathematics

Possible effects of small-scale intermittency in turbulent reacting flows. (English) Zbl 1081.76564
Summary: It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale “intermittency” on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here.

76F65 Direct numerical and large eddy simulation of turbulence
76V05 Reaction effects in flows
80A25 Combustion
Full Text: DOI