×

zbMATH — the first resource for mathematics

Turbulence noise. (English) Zbl 1081.76556
Summary: We show that the large eddy motions in turbulent fluid flow obey a modified hydrodynamic equation with a stochastic turbulent stress whose distribution is a causal functional of the large-scale velocity field itself. We do so by means of an exact procedure of statistical filtering of Navier-Stokes equations, which formally solves the closure problem, and we discuss the relation of our analysis with the decimation theory of Kraichnan. We show that the statistical filtering procedure can be formulated using field-theoretic path-integral methods within the Martin-Siggia-Rose (MSR) formalism for classical statistical dynamics. We also establish within the MSR formalism a least-effective-action principle for mean turbulent velocity profiles, which generalizes Onsager’s principle of least dissipation. This minimum principle is a consequence of a simple realizability inequality, and therefore holds also in any realizable closure. Symanzik’s theorem in field theory – which characterizes the static effective action as the minimum expected value of the quantum Hamiltonian over all state vectors with prescribed expectations of fields – is extended to MSR theory with non-Hermitian Hamiltonian. This allows stationary mean velocity profiles and other turbulence statistics to be calculated variationally by a Rayleigh-Ritz procedure. Finally, we develop approximations of the exact Langevin equations for large eddies, e.g., a random-coupling DIA model, which yield new stochastic LES models. These are compared with stochastic subgrid modeling schemes proposed by Rose, Chasnov, Leith, and others, and various applications are discussed.

MSC:
76F55 Statistical turbulence modeling
76F65 Direct numerical and large eddy simulation of turbulence
76M30 Variational methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Kraichnan, Eddy viscosity in two and three dimensions,J. Atmos. Sci. 33:1521 (1976). · Zbl 0366.76042 · doi:10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
[2] R. H. Kraichnan, Eddy viscosity and diffusivity: Exact formulas and approximations,Complex Systems 1:805 (1987). · Zbl 0652.76037
[3] L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, New York, 1959), Chapter 17.
[4] H. A. Rose, Eddy diffusivity, eddy noise, and sub-grid scale modelling,J. Fluid Mech. 81:719 (1977). · Zbl 0373.76054 · doi:10.1017/S0022112077002316
[5] C. E. Leith, Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer,Phys. Fluids A 2:297 (1990). · doi:10.1063/1.857779
[6] J. R. Chasnov, Simulation of the Kolmogorov inertial subrange using an improved subgrid model,Phys. Fluids A 3:188 (1991). · Zbl 0718.76050 · doi:10.1063/1.857878
[7] P. J. Mason and D. J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers,J. Fluid Mech. 242:51 (1992). · Zbl 0765.76039 · doi:10.1017/S0022112092002271
[8] D. Carati, Iterative filtering of the forced Navier-Stokes equation, Preprint (1994).
[9] V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence, I. Basic theory,J. Sci. Comp. 1:3 (1986). · Zbl 0648.76040 · doi:10.1007/BF01061452
[10] R. H. Kraichnan, Decimated amplitude equations in turbulence dynamics, inTheoretical Approaches to Turbulence, D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt, eds. (Springer, New York, 1985).
[11] P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems,Phys. Rev. A 8:423 (1973). · doi:10.1103/PhysRevA.8.423
[12] L. Onsager, Reciprocal relations in irreversible processes. I, II,Phys. Rev. 37:405 (1931);38:2265 (1931). · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[13] G. L. Eyink, Large-eddy simulation and the ”multifractal model” of turbulence:a priori estimates on subgrid flux and locality of energy transfer,Phys. Fluids, submitted (1994).
[14] M. Germano, Turbulence: The filtering approach,J. Fluid Mech. 238:325 (1992). · Zbl 0756.76034 · doi:10.1017/S0022112092001733
[15] M. Germano, A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations,Phys. Fluids 29:2323 (1986). · Zbl 0623.76060 · doi:10.1063/1.865568
[16] A. Leonard, On the energy cascade in large-eddy simulations of turbulent flows,Adv. Geophys. 18A:237 (1974).
[17] D. Ruelle, Measures describing a turbulent flow,Ann. N.Y. Acad. Sci. 357:1 (1980). · Zbl 0474.76056 · doi:10.1111/j.1749-6632.1980.tb29669.x
[18] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617 (1985). · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[19] D. Ruelle, Microscopic fluctuations and turbulence,Phys. Lett. A 72:81 (1979). · Zbl 0438.58003 · doi:10.1016/0375-9601(79)90653-4
[20] P. C. Hohenberg and B. Shraiman, Chaotic behavior of an extended system,Physica D 37:109 (1989). · doi:10.1016/0167-2789(89)90121-8
[21] V. Yakhot, Large-scale properties of unstable systems governed by the Kuramoto-Sivashinsky equation,Phys. Rev. A 24:642 (1983). · doi:10.1103/PhysRevA.24.642
[22] S. Zaleski, A stochastic model for the large scale dynamics of some fluctuating interfaces,Physica D 34:427 (1989). · Zbl 0668.60054 · doi:10.1016/0167-2789(89)90266-2
[23] K. Sneppenet al., Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation,Phys. Rev. A 46:R7351 (1992). · doi:10.1103/PhysRevA.46.R7351
[24] E. Lorenz, Maximum simplification of the dynamic equations,Tellus 12:243 (1960). · doi:10.1111/j.2153-3490.1960.tb01307.x
[25] R. Phythian, The operator formalism of classical statistical dynamics,J. Phys. A 8:1423 (1975). · doi:10.1088/0305-4470/8/9/011
[26] R. Phythian, Further application of the Martin, Siggia, Rose formalism,J. Phys. A 9:269 (1976). · doi:10.1088/0305-4470/9/2/012
[27] H. K. Janssen, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties,Z. Phys. B 23:377 (1976). · doi:10.1007/BF01316547
[28] C. DeDominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques,J. Phys. (Paris)C 1:247 (1976).
[29] R. Graham, Path integral formulation of general diffusion processes,Z. Phys. B 26:281 (1977). · doi:10.1007/BF01312935
[30] R. Graham, Short-time propagators in Riemannian geometries, inStatphys 13 (Proceedings of the 13th IUPAP Conference on Statistical Physics, Haifa, 1977).
[31] U. Weiss, Operator ordering schemes and covariant path integrals of quantum and stochastic processes in curved space,Z. Phys. B 30:429 (1978). · doi:10.1007/BF01321096
[32] C. Wissel, Manifolds of equivalent path integral solutions of the Fokker-Planck equations,Z. Phys. B 35:185 (1979). · doi:10.1007/BF01321245
[33] L. Arnold,Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974). · Zbl 0278.60039
[34] T. D. Lee, On some statistical properties of the hydrodynamical and magnetohydrodynamical fields,Q. Appl. Math. 10:69 (1952). · Zbl 0047.19601
[35] H. W. Wyld, Formulation of the theory of turbulence in an incompressible fluid,Ann. Phys. (N.Y.)14:143 (1961). · Zbl 0099.42003 · doi:10.1016/0003-4916(61)90056-2
[36] R. H. Kraichnan, Dynamics of nonlinear stochastic systems,J. Math. Phys. 2:124 (1961). · Zbl 0268.76038 · doi:10.1063/1.1724206
[37] V. E. Zakharov and V. S. L’vov, Statistical description of nonlinear wave fields,Izv. Vyss. Uch. Zav. Radiofiz. 18:1470 (1975).
[38] R. H. Kraichnan, Eulerian and Lagrangian renormalization in turbulence theory,J. Fluid Mech. 83:349 (1977). · Zbl 0369.76053 · doi:10.1017/S0022112077001232
[39] G. L. Eyink, The renormalization group method in statistical hydrodynamics,Phys. Fluids 6:3063 (1994). · Zbl 0830.76042 · doi:10.1063/1.868131
[40] V. S. L’vovet al., Proof of scale invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1+1 dimensions: Analytical and numerical results,Nonlinearity 6:25 (1993). · Zbl 0765.35051 · doi:10.1088/0951-7715/6/1/002
[41] K. Symanzik, Renormalizable models with simple symmetry breaking,Commun. Math. Phys. 16:48 (1970). · doi:10.1007/BF01645494
[42] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons,Z. Phys. 98:714 (1936). · doi:10.1007/BF01343663
[43] J. Schwinger, On gauge invariance and vacuum polarization,Phys. Rev. 82:664 (1951). · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[44] L. Onsager and S. Machlup, Fluctuations and irreversible processes,Phys. Rev. 91:1505 (1953). · Zbl 0053.15106 · doi:10.1103/PhysRev.91.1505
[45] R. Graham, Path-integral methods in nonequilibrium thermodynamics and statistics, inStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. J. Shepherd, eds. (Springer-Verlag, Berlin, 1978). · Zbl 0391.60063
[46] G. L. Eyink, Dissipation and large thermodynamic fluctuations,J. Stat. Phys. 61:533 (1990). · doi:10.1007/BF01027291
[47] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators,Phys. Rev. D 10:2428 (1974). · Zbl 1110.81324 · doi:10.1103/PhysRevD.10.2428
[48] H. Risken,The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984). · Zbl 0546.60084
[49] M. Hausner and J. T. Schwartz,Lie Groups and Their Lie Algebras (Gordon and Breach, New York, 1968). · Zbl 0192.35902
[50] D. Ruelle, Locating resonances for Axiom A dynamical systems,J. Stat. Phys. 44:281 (1986). · Zbl 0655.58026 · doi:10.1007/BF01011300
[51] R. Jackiw and A. Kerman, Time-dependent variational principle and effective action,Phys. Lett. A 71:158 (1979). · doi:10.1016/0375-9601(79)90151-8
[52] P. A. M. Dirac, Note on exchange phenomena in the Thomas atom,Proc. Camb. Phil. Soc. 26:376 (1930). · JFM 56.0751.04 · doi:10.1017/S0305004100016108
[53] R. H. Kraichnan, Convergents to turbulence functions,J. Fluid Mech. 41:189 (1970). · Zbl 0198.59503 · doi:10.1017/S0022112070000587
[54] R. H. Kraichnan, Irreversible statistical mechanics of incompressible hydromagnetic turbulence,Phys. Rev. 109:1407 (1958). · Zbl 0085.20506 · doi:10.1103/PhysRev.109.1407
[55] R. H. Kraichnan, Variational method in turbulence theory,Phys. Rev. Lett. 42:1263 (1979). · doi:10.1103/PhysRevLett.42.1263
[56] J. Qian, Variational approach to the closure problem of turbulence theory,Phys. Fluids 26:2098 (1983). · Zbl 0556.76037 · doi:10.1063/1.864414
[57] B. Castaing, Conséquences d’un principe d’extrémum en turbulence,J. Phys. (Paris)50:147 (1989).
[58] F. H. Busse, The optimum theory of turbulence,Adv. Appl. Math. 18:77 (1978). · Zbl 0472.76055
[59] J. R. Herring and R. H. Kraichnan, Comparison of some approximations for isotropic turbulence, inStatistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds. (Springer, New York, 1972). · Zbl 0233.76104
[60] C. Meneveau and A. Chhabra, Two-point statistics of multifractal measures,Physica A 164:564 (1990). · doi:10.1016/0378-4371(90)90223-F
[61] C. E. Leith and R. H. Kraichnan, Predictability of turbulent flows,J. Atmos. Sci. 29:1041 (1972). · doi:10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
[62] E. N. Lorenz, Deterministic non-periodic flow,J. Atmos. Sci. 20:130 (1963). · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[63] R. A. Pielkeet al., Several unresolved isues in numerical modelling of geophysical flows,Atmos. Oceans, submitted.
[64] C. C. Chow and T. Hwa, Defect-mediated stability: an effective hydrodynamic theory of spatiotemporal chaos, Preprint [chao-dyn@xyz.lanl.gov, #9412041]. · Zbl 1194.37164
[65] C. Jarzynski, Thermalization of a Brownian particle via coupling to low-dimensional chaos,Phys. Rev. Lett. 74:2937 (1995). · doi:10.1103/PhysRevLett.74.2937
[66] D. N. Zubarev and V. G. Morozov, Statistical mechanics of nonlinear hydrodynamic fluctuations,Physica 120A:411 (1983).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.