×

zbMATH — the first resource for mathematics

Numerical continuation of branch points of equilibria and periodic orbits. (English) Zbl 1081.37054

MSC:
37M20 Computational methods for bifurcation problems in dynamical systems
37C27 Periodic orbits of vector fields and flows
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37N99 Applications of dynamical systems
37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/978-3-642-61257-2 · doi:10.1007/978-3-642-61257-2
[2] DOI: 10.1002/zamm.19970770203 · doi:10.1002/zamm.19970770203
[3] DOI: 10.1145/355945.355950 · Zbl 0455.65067 · doi:10.1145/355945.355950
[4] DOI: 10.1137/1.9781611971231 · doi:10.1137/1.9781611971231
[5] DOI: 10.1016/S1874-575X(02)80025-X · doi:10.1016/S1874-575X(02)80025-X
[6] Borisyuk R. M., FORTRAN Software Series 6, in: Stationary Solutions of a System of Ordinary Differential Equations Depending upon a Parameter (1981)
[7] DOI: 10.1137/0710052 · Zbl 0232.65065 · doi:10.1137/0710052
[8] DOI: 10.1145/779359.779362 · Zbl 1070.65574 · doi:10.1145/779359.779362
[9] DOI: 10.1016/0009-2509(83)80084-0 · doi:10.1016/0009-2509(83)80084-0
[10] DOI: 10.1142/S0218127491000555 · Zbl 0876.65060 · doi:10.1142/S0218127491000555
[11] Doedel E. J., User’s Guide (2001)
[12] DOI: 10.1137/S0036142902400779 · Zbl 1066.65154 · doi:10.1137/S0036142902400779
[13] Doedel E. J., Int. J. Bifurcation and Chaos 13 pp 1–
[14] Freire E., Physica 62 pp 230–
[15] DOI: 10.1007/978-1-4612-5034-0 · doi:10.1007/978-1-4612-5034-0
[16] DOI: 10.1007/978-1-4612-4574-2 · doi:10.1007/978-1-4612-4574-2
[17] DOI: 10.1137/1.9780898719543 · Zbl 0935.37054 · doi:10.1137/1.9780898719543
[18] DOI: 10.1137/0721012 · Zbl 0536.65031 · doi:10.1137/0721012
[19] H. B. Keller, Applications of Bifurcation Theory, ed. P. H. Rabinowitz (Academic Press, 1977) pp. 359–384.
[20] DOI: 10.1007/978-3-0348-6256-1 · doi:10.1007/978-3-0348-6256-1
[21] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory (1998) · Zbl 0914.58025
[22] Mei Z., Numer. Funct. Anal. Optim. 10 pp 383–
[23] DOI: 10.1007/978-3-662-04177-2 · doi:10.1007/978-3-662-04177-2
[24] DOI: 10.1007/978-3-0348-6294-3 · doi:10.1007/978-3-0348-6294-3
[25] DOI: 10.1080/01630568008816070 · Zbl 0459.65040 · doi:10.1080/01630568008816070
[26] Muñoz-Almaraz J., Physica 181 pp 1–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.