zbMATH — the first resource for mathematics

Reconstruction of an impedance in two-dimensions from spectral data. (English) Zbl 1081.35145
Summary: The two-dimensional spectral inverse problem involves the reconstruction of an unknown coefficient in an elliptic partial differential equation from spectral data, such as eigenvalues. Projection of the boundary value problem and the unknown coefficient onto appropriate vector spaces leads to a matrix inverse problem. Unique solutions of this matrix inverse problem exist provided that the eigenvalue data is close to the eigenvalues associated with the analogous constant coefficient boundary value problem. We discuss here the application of such a technique to the reconstruction of an impedance \(p\) in the boundary value problem \[ -\nabla(p \nabla u)=\lambda pu\text{ in }R,\quad u=0\text{ on }\delta R, \] where \(R\) is a rectangular domain. The matrix inverse problem, although nonstandard, is solved by a fixed-point iterative method and an impedance function \(p^*\) is constructed which has the same \(m\) lowest eigenvalues as the unknown \(p\). Numerical evidence of the success of the method is presented.

35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35P05 General topics in linear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI
[1] DOI: 10.1088/0266-5611/6/1/004 · Zbl 0712.35105 · doi:10.1088/0266-5611/6/1/004
[2] Courant R., Methods of Mathematical Physics 1 (1953) · Zbl 0051.28802
[3] DOI: 10.1002/(SICI)1099-1506(199701/02)4:1<1::AID-NLA95>3.0.CO;2-D · Zbl 0889.65039 · doi:10.1002/(SICI)1099-1506(199701/02)4:1<1::AID-NLA95>3.0.CO;2-D
[4] El Badia A., C. R. Acad. Sd. Paris Ser. I Math. 308 pp 273– (1989)
[5] DOI: 10.1137/0724043 · Zbl 0622.65030 · doi:10.1137/0724043
[6] DOI: 10.1090/S0025-5718-1978-0501963-2 · doi:10.1090/S0025-5718-1978-0501963-2
[7] HaId O.H., Inverse Nodal Problems: Finding the Potential from Nodal Lines (1996)
[8] DOI: 10.1007/BF00942754 · Zbl 0828.35140 · doi:10.1007/BF00942754
[9] Lee C.J., Inverse Problems in Wave Propagation pp 325– (1997)
[10] A Treatise on the Mathematical Theory of Elasticity (1944)
[11] McCarthy, C.M. Recovery of a density from the eigenvalues for a nonhomogeneous membrane. Third International Conference on Inverse Problems in Engineering. Edited by: Woodbury, K.A. New York, NY: ASME.
[12] DOI: 10.1080/00036810108840896 · doi:10.1080/00036810108840896
[13] McLaughlin, J.R. Formulas for finding coeffiecients from nodes/nodal lines. Proceedings of the International Congress of Mathematicians. 1994, Zurich, Switzerland. pp.1494–1501. Basel: Birkhäuser Verlag. · Zbl 0849.73032
[14] McLaughlin J.R., Surveys onSolution Methods for Inverse Problems pp 169– (2000)
[15] DOI: 10.1080/03605309808821345 · Zbl 0897.35058 · doi:10.1080/03605309808821345
[16] DOI: 10.1007/BF01224129 · Zbl 0644.35095 · doi:10.1007/BF01224129
[17] DOI: 10.1088/0266-5611/4/4/011 · Zbl 0687.35108 · doi:10.1088/0266-5611/4/4/011
[18] Stewart G.W., Introduction to Matrix Computations (1973) · Zbl 0302.65021
[19] Strang O.S., An Analysis of the Finite Element Method (1973) · Zbl 0356.65096
[20] Titchmarsh E.C., Eigenfunction Expansions Associated with Second-OrderDifferential Equations (1962) · Zbl 0099.05201
[21] Weinberger, H. Variational methods for eigenvalue approximation. CBMS-NSF Regional Conference Series in Applied Mathematics. Vol. 15, Philadelphia, PA: SIAM. · Zbl 0296.49033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.