zbMATH — the first resource for mathematics

Surface quasigeostrophic turbulence: the study of an active scalar. (English) Zbl 1080.86504
Summary: We study the statistical and geometrical properties of the potential temperature (PT) field in the surface quasigeostrophic (SQG) system of equations. In addition to extracting information in a global sense via tools such as the power spectrum, the g-beta spectrum, and the structure functions we explore the local nature of the PT field by means of the wavelet transform method. The primary indication is that an initially smooth PT field becomes rough (within specified scales), though in a qualitatively sparse fashion. Similarly, initially one-dimensional iso-PT contours (i.e., PT level sets) are seen to acquire a fractal nature. Moreover, the dimensions of the iso-PT contours satisfy existing analytical bounds. The expectation that the roughness will manifest itself in the singular nature of the gradient fields is confirmed via the multifractal nature of the dissipation field. Following earlier work on the subject, the singular and oscillatory nature of the gradient field is investigated by examining the scaling of a probability measure and a sign singular measure, respectively. A physically motivated derivation of the relations between the variety of scaling exponents is presented, the aim being to bring out some of the underlying assumptions which seem to have gone unnoticed in previous presentations. Apart from concentrating on specific properties of the SQG system, a broader theme of the paper is a comparison of the diagnostic inertial range properties of the SQG system with both the two- and three-dimensional Euler equations.

86A05 Hydrology, hydrography, oceanography
76F99 Turbulence
Full Text: DOI
[1] DOI: 10.1017/S0022112095000012 · Zbl 0832.76012 · doi:10.1017/S0022112095000012
[2] DOI: 10.1016/0960-0779(94)90140-6 · Zbl 0823.76034 · doi:10.1016/0960-0779(94)90140-6
[3] DOI: 10.1088/0951-7715/7/6/001 · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[4] DOI: 10.1016/0167-2789(96)00114-5 · Zbl 0899.76105 · doi:10.1016/0167-2789(96)00114-5
[5] DOI: 10.1103/PhysRevE.61.6572 · doi:10.1103/PhysRevE.61.6572
[6] DOI: 10.1103/PhysRevE.60.2858 · doi:10.1103/PhysRevE.60.2858
[7] DOI: 10.1063/1.869184 · Zbl 1185.76841 · doi:10.1063/1.869184
[8] DOI: 10.1073/pnas.061038998 · Zbl 0965.35133 · doi:10.1073/pnas.061038998
[9] DOI: 10.1209/0295-5075/29/5/004 · doi:10.1209/0295-5075/29/5/004
[10] DOI: 10.1088/0305-4470/19/18/023 · Zbl 0614.76061 · doi:10.1088/0305-4470/19/18/023
[11] DOI: 10.1143/JPSJ.58.1595 · doi:10.1143/JPSJ.58.1595
[12] DOI: 10.1103/PhysRevE.50.1823 · doi:10.1103/PhysRevE.50.1823
[13] DOI: 10.1051/jphys:01978003905044100 · doi:10.1051/jphys:01978003905044100
[14] DOI: 10.1103/PhysRevA.42.3654 · doi:10.1103/PhysRevA.42.3654
[15] DOI: 10.1103/PhysRevE.49.4716 · doi:10.1103/PhysRevE.49.4716
[16] DOI: 10.1098/rspa.1991.0082 · Zbl 0727.76064 · doi:10.1098/rspa.1991.0082
[17] DOI: 10.1103/PhysRevE.47.875 · doi:10.1103/PhysRevE.47.875
[18] DOI: 10.1016/0378-4371(94)00163-N · doi:10.1016/0378-4371(94)00163-N
[19] DOI: 10.1103/PhysRevLett.67.3515 · doi:10.1103/PhysRevLett.67.3515
[20] DOI: 10.1109/18.119727 · Zbl 0745.93073 · doi:10.1109/18.119727
[21] DOI: 10.1103/PhysRevLett.67.1739 · doi:10.1103/PhysRevLett.67.1739
[22] DOI: 10.1103/PhysRevA.46.4819 · doi:10.1103/PhysRevA.46.4819
[23] DOI: 10.1103/PhysRevE.47.3307 · doi:10.1103/PhysRevE.47.3307
[24] DOI: 10.1103/PhysRevA.33.1141 · Zbl 1184.37028 · doi:10.1103/PhysRevA.33.1141
[25] DOI: 10.1017/S0022112091001830 · Zbl 0717.76061 · doi:10.1017/S0022112091001830
[26] DOI: 10.1098/rspa.1997.0039 · Zbl 0893.76034 · doi:10.1098/rspa.1997.0039
[27] DOI: 10.1016/0167-2789(83)90235-X · Zbl 0538.58026 · doi:10.1016/0167-2789(83)90235-X
[28] DOI: 10.1103/PhysRevA.38.6287 · doi:10.1103/PhysRevA.38.6287
[29] DOI: 10.1103/PhysRevLett.69.2654 · doi:10.1103/PhysRevLett.69.2654
[30] DOI: 10.1016/0167-2789(94)90257-7 · Zbl 1194.76070 · doi:10.1016/0167-2789(94)90257-7
[31] DOI: 10.1103/PhysRevE.49.55 · doi:10.1103/PhysRevE.49.55
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.