zbMATH — the first resource for mathematics

The inverse scattering transform: tools for the nonlinear Fourier analysis and filtering of ocean surface waves. (English) Zbl 1080.86502
Summary: Surface wave data from the Adriatic Sea are analysed in the light of new data analysis techniques which may be viewed as a nonlinear generalization of the ordinary Fourier transform. Nonlinear Fourier analysis as applied herein arises from the exact spectral solution to large classes of nonlinear wave equations which are integrable by the inverse scattering transform (IST). Numerical methods are discussed which allow for implementation of the approach as a tool for the time series analysis of oceanic wave data. The case for unidirectional propagation in shallow water, where integrable nonlinear wave motion is governed by the Korteweg-deVries (KdV) equation with periodic/quasi-periodic boundary conditions, is considered. Numerical procedures given herein can be used to compute a nonlinear Fourier representation for a given measured time series. The nonlinear oscillation modes (the IST ’basis functions’) of KdV obey a linear superposition law, just as do the sine waves of a linear Fourier series. However, the KdV basis functions themselves are highly nonlinear, undergo nonlinear interactions with each other and are distinctly non-sinusoidal. Numerical IST is used to analyse Adriatic Sea data and the concept of nonlinear filtering is applied to improve understanding of the dominant nonlinear interactions in the measured wavetrains.

86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
35Q53 KdV equations (Korteweg-de Vries equations)
37M10 Time series analysis of dynamical systems
Full Text: DOI
[1] Osborne, A.R., Automatic algorithm for the numerical inverse scattering transform of the Korteweg-devries equation, (1993), submitted for publication
[2] Osborne, A.R., Numerical construction of nonlinear wavetrain solutions of the periodic Korteweg-devries equation, Phys. rev. E., 48, 296-309, (1993)
[3] Bishop, A.R.; Forest, M.G.; McLaughlin, D.W.; Overman, E.A., A quasi-periodic route to chaos in a near integrable PDE, Physica, D18, 293-312, (1986) · Zbl 0616.65135
[4] Osborne, A.R.; Bergamasco, L., The small-amplitude limit of the spectral transform for the periodic Korteweg-devries equation, Nuovo cimento, B85, 229-243, (1985)
[5] Osborne, A.R.; Bergamasco, L., The solitons of zabusky and Kruskal revisited: perspective in terms of the periodic scattering transform, Physica, D18, 26-243, (1986) · Zbl 0601.35101
[6] Osborne, A.R.; Segre, E., Numerical solutions of the Korteweg-devries equation using the periodic scattering transform μ-representation, Physica, D44, 575-604, (1990) · Zbl 0707.65089
[7] Terrones, G.; McLaughlin, D.W.; Overman, E.A.; Pearlstein, A., Stability and bifurcation of spatially coherent solutions of the damped driven nonlinear schroedinger equation, SIAM J. appl. math., 50, 791-818, (1990) · Zbl 0702.58067
[8] Flesch, R.; Forest, M.G.; Sinha, A., Physica, D48, 169-208, (1991)
[9] Osborne, A.R.; Segre, E.; Boffetta, G.; Cavaleri, L., Soliton basis states in shallow-water Ocean surface waves, Phys. rev. lett., 64, 1733, (1991)
[10] Osborne, A.R., Nonlinear Fourier analysis, (), 669-700
[11] Osborne, A.R., Nonlinear Fourier analysis for the infinit-interval Korteweg-de Vries equation: I. an algorithm for the direct scattering transform, J. comp. phys., 94, 2, 284-313, (1991) · Zbl 0729.65097
[12] McLaughlin, D.W.; Schober, C.M., Chaotic and homoclinic behavior for numerical discretizations of the nonlinear schroedinger equation, Physica, D57, 447-465, (1992) · Zbl 0760.35045
[13] A. R. Osborne, M. Serio, L. Bergamasco and L. Caveleri, in preparation (1993).
[14] ()
[15] Kinsman, B., ()
[16] Brandt, A.; Ramberg, S.E.; Shlesinger, M.F., ()
[17] Bendat, J.S.; Piersol, A.G., ()
[18] ()
[19] Cavaleri, L., WAM, a third-generation wave model, (), 925-944
[20] Osborne, A.R., The behavior of solitons in random function solutions of the periodic Korteweg-devries equation, Phys. rev. lett., (1993), to appear
[21] Elgar, S.; Guza, R.T., J. fluid mech., 167, 1, (1986)
[22] Zakharov, V.E.; Manakov, S.V.; Novikov, S.P.; Pitayevsky, M.P., Theory of solitons. the method of the inverse scattering problem, (1980), Nauka Moscow, in Russian
[23] Ablowitz, M.J.; Segur, H., ()
[24] Dodd, R.K.; Eilbeck, J.E.; Gibbon, J.D.; Morris, H.C., ()
[25] Newell, A.C., ()
[26] Degasperis, A., Nonlinear wave equations solvable by the spectral transform, () · Zbl 0485.35076
[27] Whitham, G.B., ()
[28] Miles, J.W., Solitary waves, Ann. rev. fluid mech., 12, 11-43, (1980)
[29] Karpman, V.I., ()
[30] Dubrovin, B.A.; Novikov, S.P., Periodic and conditionally periodic analogues of the many-soliton solutions of the Korteweg-de Vries equation, Sov. phys. JETP, 40, 1058-1063, (1974)
[31] Dubrovin, B.A.; Matveev, V.B.; Novikov, S.P., Nonlinear equation of Korteweg-devries type, finite-zone linear operators, and abelian varieties, Russ. math. surv., 31, 59-146, (1976) · Zbl 0346.35025
[32] Flaschka, H.; McLaughlin, D.W., Canonically conjugate variables for KdV and Toda lattice under periodic boundary conditions, Prog. theor. phys., 55, 438-456, (1976) · Zbl 1109.35374
[33] McKean, H.P.; Trubowitz, E., Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. pure appl. math., 29, 143-226, (1976) · Zbl 0339.34024
[34] Osborne, A.R., The numerical inverse scattering transform: nonlinear Fourier analysis and nonlinear filtering of oceanic surface waves, () · Zbl 1080.86502
[35] Cavaleri, L., Experimental characteristics of wind waves, () · Zbl 1160.93388
[36] Osborne, A.R.; Petti, M., Laboratory-generated, shallow water surface waves: analysis using the periodic, inverse scattering transform, (1993), Submitted for publication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.