×

zbMATH — the first resource for mathematics

Front speed enhancement in cellular flows. (English) Zbl 1080.80501
Summary: The problem of front propagation in a stirred medium is addressed in the case of cellular flows in three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known that a consequence of stirring is the enhancement of front speed with respect to the nonstirred case. By means of numerical simulations and theoretical arguments we describe the behavior of front speed as a function of the stirring intensity, \(U\). For slow reaction, the front propagates with a speed proportional to \(U^{1/4}\), conversely for fast reaction the front speed is proportional to \(U^{3/4}\). In the geometrical optics limit, the front speed asymptotically behaves as \(U/\ln U\).

MSC:
80A32 Chemically reacting flows
35K57 Reaction-diffusion equations
35Q80 Applications of PDE in areas other than physics (MSC2000)
92C35 Physiological flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/S0036144599364296 · Zbl 0951.35060 · doi:10.1137/S0036144599364296
[2] DOI: 10.1038/35037555 · doi:10.1038/35037555
[3] DOI: 10.1038/35037555 · doi:10.1038/35037555
[4] DOI: 10.1038/374321a0 · doi:10.1038/374321a0
[5] DOI: 10.1038/374321a0 · doi:10.1038/374321a0
[6] DOI: 10.1103/PhysRevLett.74.3804 · doi:10.1103/PhysRevLett.74.3804
[7] DOI: 10.1111/j.1469-1809.1937.tb02153.x · doi:10.1111/j.1469-1809.1937.tb02153.x
[8] DOI: 10.1111/j.1469-1809.1937.tb02153.x · doi:10.1111/j.1469-1809.1937.tb02153.x
[9] DOI: 10.1007/BF02811193 · doi:10.1007/BF02811193
[10] Audoly B., C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 328 pp 255– (2000)
[11] DOI: 10.1007/s002050000090 · Zbl 0979.76093 · doi:10.1007/s002050000090
[12] DOI: 10.1016/S0294-1449(01)00068-3 · Zbl 1002.35069 · doi:10.1016/S0294-1449(01)00068-3
[13] DOI: 10.1063/1.866729 · doi:10.1063/1.866729
[14] DOI: 10.1063/1.866729 · doi:10.1063/1.866729
[15] DOI: 10.1103/PhysRevE.64.046307 · doi:10.1103/PhysRevE.64.046307
[16] DOI: 10.1063/1.869485 · Zbl 1185.76766 · doi:10.1063/1.869485
[17] DOI: 10.1063/1.869485 · Zbl 1185.76766 · doi:10.1063/1.869485
[18] DOI: 10.1063/1.868452 · Zbl 1039.80504 · doi:10.1063/1.868452
[19] DOI: 10.1103/PhysRevA.37.2728 · doi:10.1103/PhysRevA.37.2728
[20] DOI: 10.1103/PhysRevE.52.3249 · doi:10.1103/PhysRevE.52.3249
[21] DOI: 10.1103/PhysRevE.52.3249 · doi:10.1103/PhysRevE.52.3249
[22] DOI: 10.1063/1.857415 · Zbl 0659.76097 · doi:10.1063/1.857415
[23] DOI: 10.1063/1.166475 · Zbl 0983.76032 · doi:10.1063/1.166475
[24] DOI: 10.1103/PhysRevE.55.2750 · doi:10.1103/PhysRevE.55.2750
[25] DOI: 10.1016/S0370-1573(98)00083-0 · doi:10.1016/S0370-1573(98)00083-0
[26] Pomeau Y., C. R. Acad. Sci. 301 pp 1323– (1985)
[27] DOI: 10.1103/PhysRevA.36.261 · doi:10.1103/PhysRevA.36.261
[28] DOI: 10.1063/1.866107 · Zbl 0636.76089 · doi:10.1063/1.866107
[29] DOI: 10.1002/cpa.3000 · Zbl 1032.35087 · doi:10.1002/cpa.3000
[30] DOI: 10.1080/00102209708935721 · doi:10.1080/00102209708935721
[31] DOI: 10.1080/00102209108951783 · doi:10.1080/00102209108951783
[32] Aldredge R. C., Condens. Matter Phys. 106 pp 29– (1996)
[33] M. Cencini, A. Torcini, D. Vergni, and A. Vulpiani, ”Thin front propagation in steady and unsteady cellular flows” (LANL e-print archive nlin.PS/0201015). · Zbl 1185.76077
[34] DOI: 10.1080/00102208808923984 · doi:10.1080/00102208808923984
[35] DOI: 10.1103/PhysRevLett.80.2837 · doi:10.1103/PhysRevLett.80.2837
[36] DOI: 10.1103/PhysRevLett.68.934 · doi:10.1103/PhysRevLett.68.934
[37] DOI: 10.1080/00102209308907663 · doi:10.1080/00102209308907663
[38] DOI: 10.1103/PhysRevE.63.026101 · doi:10.1103/PhysRevE.63.026101
[39] DOI: 10.1103/PhysRevE.63.026101 · doi:10.1103/PhysRevE.63.026101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.