×

zbMATH — the first resource for mathematics

The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equations. (English) Zbl 1080.35127
Summary: The complex modified KdV equation and the generalized KdV equation are investigated by using the tanh method and the sine-cosine method. A variety of exact travelling wave solutions with compact and noncompact structures are formally obtained for each equation. The study reveals the power of the two schemes where each method complements the other.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
Software:
MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Karney, C.F.F.; Sen, A.; Chu, F.Y., Nonlinear evolution of lower hybrid waves, Phys. fluids, 22, 5, 940-952, (1979) · Zbl 0396.76014
[2] Gorbacheva, O.B.; Ostrovsky, L.A., Nonlinear vector waves in a mechanical model of a molecular chain, Physica D, 8, 223-228, (1983)
[3] Muslu, G.M.; Erbay, H.A., A split-step Fourier method for the complex modified Korteweg-de Vries equation, Computers math. applic., 45, 1-3, 503-514, (2003) · Zbl 1035.65111
[4] Wang, J.P., A List of 1 + 1 dimensional integrable equations and their properties, Journal of nonlinear mathematical physics, 9, 213-233, (2002) · Zbl 1362.37137
[5] Yang, J., Stable embedded solitons, Physical review letters, 91, 14, 1-4, (2003)
[6] Goktas, U.; Hereman, E., Symbolic computation of conserved densities for systems of nonlinear evolution equations, Journal of symbolic computation, 24, 5, 591-622, (1997) · Zbl 0891.65129
[7] Wadati, M., Introduction to solitons, Pramana: journal of physics, 57, 5-6, 841-847, (2001)
[8] Wadati, M., The exact solution of the modified kortweg-de Vries equation, J. phys. soc. Japan, 32, 1681-1687, (1972)
[9] Fordy, A.P., Soliton theory: A survey of results, (1990), MUP Spain
[10] Newell, A.C., Solitons in mathematics and physics, (1985), SIAM Manchester · Zbl 0565.35003
[11] Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E., Theory of solitons, (1984), Plenum Philadelphia, PA · Zbl 0598.35002
[12] Kivshar, Y.S.; Pelinovsky, D.E., Self-focusing and transverse instabilities of solitary waves, Physics reports, 331, 117-195, (2000)
[13] Kadomtsev, B.B.; Petviashvili, V.I., Sov. phys. JETP, 39, 285-295, (1974)
[14] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. phys. A, 23, 4805-4822, (1990) · Zbl 0719.35085
[15] Rosenau, P.; Hyman, J.M., Compactons: solitons with finite wavelengths, Phys. rev. lett, 70, 5, 564-567, (1993) · Zbl 0952.35502
[16] Dusuel, S.; Michaux, P.; Remoissenet, M., From kinks to compactonlike kinks, Physical review E, 57, 2, 2320-2326, (1998)
[17] Ludu, A.; Draayer, J.P., Patterns on liquid surfaces: cnoidal waves, compactons and scaling, Physica D, 123, 82-91, (1998) · Zbl 0952.76008
[18] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys., 60, 7, 650-654, (1992) · Zbl 1219.35246
[19] Malfliet, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Physica scripta, 54, 563-568, (1996) · Zbl 0942.35034
[20] Malfliet, W., The tanh method: II. perturbation technique for conservative systems, Physica scripta, 54, 569-575, (1996) · Zbl 0942.35035
[21] Wazwaz, A.M., The tanh method for travelling wave solutions of nonlinear equations, Appl. math. comput., 154, 3, 713-723, (2004) · Zbl 1054.65106
[22] Wazwaz, A.M., Partial differential equations: methods and applications, (2002), Balkema Publishers New York · Zbl 0997.35083
[23] Wazwaz, A.M., New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations, Chaos, solitons and fractals, 13, 2, 321-330, (2002) · Zbl 1028.35131
[24] Wazwaz, A.M., Exact specific solutions with solitary patterns for the nonlinear dispersive K(m, n) equations, Chaos, solitons and fractals, 13, 1, 161-170, (2001) · Zbl 1027.35115
[25] Wazwaz, A.M., General compactons solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces, Appl. math. comput., 133, 2/3, 213-227, (2002) · Zbl 1027.35117
[26] Wazwaz, A.M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces, Appl. math. comput., 133, 2/3, 229-244, (2002) · Zbl 1027.35118
[27] Wazwaz, A.M., Compactons dispersive structures for variants of the K(n,n) and the KP equations, Chaos, solitons and fractals, 13, 5, 1053-1062, (2002) · Zbl 0997.35083
[28] Wazwaz, A.M., Compactons and solitary patterns structures for variants of the K dv and the KP equations, Appl. math. comput., 139, 1, 37-54, (2003) · Zbl 1029.35200
[29] Wazwaz, A.M., A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl. math. comput., 135, 2/3, 399-409, (2003) · Zbl 1027.35120
[30] Wazwaz, A.M., A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl. math. comput., 135, 2/3, 311-324, (2003)
[31] Wazwaz, A.M., Compactons in a class of nonlinear dispersive equations, Mathl. comput. modelling, 37, 3/4, 333-341, (2003) · Zbl 1044.35078
[32] Wazwaz, A.M., Distinct variants of the K dv equation with compact and noncompact structures, Appl. math. comput., 150, 365-377, (2004) · Zbl 1039.35110
[33] Wazwaz, A.M., Variants of the generalized K dv equation with compact and noncompact structures, Computers math. applic., 47, 4/5, 583-591, (2004) · Zbl 1062.35120
[34] Wazwaz, A.M., New compactons, solitons and periodic solutions for nonlinear variants of the K dv and the KP equations, Chaos, solitons and fractals, 22, 249-260, (2004) · Zbl 1062.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.