zbMATH — the first resource for mathematics

Asymptotic analysis of the lattice Boltzmann equation. (English) Zbl 1079.82013
A general methodology is presented to conduct an order-by-order consistency analysis of the lattice Boltzmann equation. The approach is based on a direct asymptotic analysis of finite difference schemes. It turns out that the basic steps in the asymptotic expansion are parallel to the approach shown by Y. Sone for the continuous Boltzmann equation which helps to point out the connection between the lattice Boltzmann equation and the finite discrete velocity model. It is demonstrated that the asymptotic analysis yields details about the accuracy of the lattice Boltzmann method and the structure of the error. The methodology presented here can be extended to analyze various boundary conditions, coupling conditions and initial layers in the lattice Boltzmann equation simulations. The asymptotic analysis presented here differs from the traditional Chapman-Enskog treatment of the lattice Boltzmann equation. This approach uses a single time scale (as opposed to the two-time-scale) expansion in the Chapman-Enskog analysis. This model leads to the incompressible Navier-Stokes equations. The asymptotic analysis is applied directly to the fully discrete lattice Boltzmann equation. The consistency analysis provides order-by-order information about the numerical solution of the lattice Boltzmann equation. The asymptotic analysis is used to evaluate the leading orders and accuracy of numerically derived quantities, for instance the vorticity. The Richardson’s extrapolation method is justified. As an illustration, the two-dimensional Taylor-vortex flow is shown to validate the analysis.

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
Full Text: DOI
[1] Bardos, C.; Golse, F.; Levermore, D., Fluid dynamic limits of kinetic equations: formal derivations, J. stat. phys., 63, 323-344, (1991)
[2] Benzi, R.; Succi, S.; Vergassola, M., The lattice-Boltzmann equation: theory and applications, Phys. rep., 222, 145-197, (1992)
[3] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases I: small amplitude processes in charged and neutral one-component systems, Phys. rev., 94, 511-525, (1954) · Zbl 0055.23609
[4] A. Caiazzo, Analysis of lattice Boltzmann initialization routines, J. Stat. Phys., in press. · Zbl 1108.76087
[5] Chang, S.-C., A critical analysis of the modified equation technique of warming and hyett, J. comput. phys., 86, 107-126, (1990) · Zbl 0689.65059
[6] Chen, H.; Chen, S.; Matthaeus, W., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. rev. A, 45, 5339-5342, (1992)
[7] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. rev. fluid mech., 30, 329-364, (1998) · Zbl 1398.76180
[8] Cornubert, R.; d’Humières, D.; Levermore, C.D., A Knudsen layer theory for lattice gases, Physica D, 47, 241-259, (1991) · Zbl 0717.76100
[9] De Masi, A.; Esposito, R.; Lebowitz, J.L., Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. pure appl. math., 42, 1189, (1989) · Zbl 0689.76024
[10] d’Humières, D., Generalized lattice-Boltzmann equations, (), 450-458
[11] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. trans. R. soc. lond. A, 360, 437-451, (2002) · Zbl 1001.76081
[12] Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.P., Lattice gas hydrodynamics in two and three dimensions, Complex systems, 1, 649-707, (1987) · Zbl 0662.76101
[13] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice-gas automata for the Navier-Stokes equation, Phys. rev. lett., 56, 1505-1508, (1986)
[14] Golse, F.; Saint-Raymond, L., The Navier-Stokes limit of the Boltzmann equation, C. R. acad. sci. Paris Série I, 333, 9, 897-902, (2001) · Zbl 1056.35134
[15] Golse, F.; Saint-Raymond, L., The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. math., 155, 81-161, (2004) · Zbl 1060.76101
[16] Griffiths, D.F.; Sanz-Serna, J.M., On the scope of the method of modified equations, SIAM J. sci. comput., 7, 994-1008, (1986) · Zbl 0613.65079
[17] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. stat. phys., 88, 927-944, (1997) · Zbl 0939.82042
[18] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. rev. E, 55, 6333-6336, (1997)
[19] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E, 56, 6811-6817, (1997)
[20] Higuera, F.J.; Jiménez, J., Boltzmann approach to lattice gas simulations, Europhys. lett., 9, 663-668, (1989)
[21] Higuera, F.J.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, Europhys. lett., 9, 345-349, (1989)
[22] Ilachinski, A., Cellular automata, (2001), World Scientific Singapore · Zbl 1031.68081
[23] Inamuro, T.; Yoshino, M.; Ogino, F., Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. fluids, 9, 3535-3542, (1997) · Zbl 1185.76869
[24] Junk, M., A finite difference interpretation of the lattice Boltzmann method, Numer. methods partial differential equations, 17, 383-402, (2001) · Zbl 0987.76082
[25] Junk, M.; Yang, Z., Analysis of lattice Boltzmann boundary conditions, Proc. appl. math. mech., 3, 76-79, (2003) · Zbl 1354.76146
[26] Junk, M.; Yang, Z., Asymptotic analysis of finite difference methods, Appl. math. comput., 158, 267-301, (2004) · Zbl 1061.65084
[27] Junk, M.; Yong, W.A., Rigorous Navier-Stokes limit of the lattice Boltzmann equation, Asympt. anal., 35, 165-185, (2003) · Zbl 1043.76003
[28] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. rev. E, 61, 6546-6562, (2000)
[29] Lions, P.-L.; Masmoudi, M., From the Boltzmann equations to the equations of incompressible fluid mechanics: parts I and II, Arch. rat. mech. anal., 158, 173-211, (2001) · Zbl 0987.76088
[30] Luo, L.-S., Unified theory of the lattice Boltzmann models for nonideal gases, Phys. rev. lett., 81, 1618-1621, (1998)
[31] Luo, L.-S., Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases, Phys. rev. E, 62, 4982-4996, (2000)
[32] Luo, L.-S., Comment on discrete Boltzmann equation for microfluidics, Phys. rev. lett., 92, 139401, (2004)
[33] Marchuk, G.I.; Shaidurov, V.V., Difference methods and their extrapolations, (1983), Springer Berlin · Zbl 0511.65076
[34] Martys, N.S.; Shan, X.; Chen, H., Evaluation of the external force term in the discrete Boltzmann equation, Phys. rev. E, 58, 6855-6857, (1998) · Zbl 1073.81571
[35] McNamara, G.R.; Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. rev. lett., 61, 2332-2335, (1988)
[36] Mei, R.; Shyy, W.; Yu, D.; Luo, L.S., Lattice Boltzmann method for 3-d flows with curved boundary, J. comput. phys., 161, 680-699, (2000) · Zbl 0980.76064
[37] C. Pan, L.-S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluid, in press.
[38] Qi, D.; Luo, L.-S., Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow, Phys. fluid, 14, 4440-4443, (2002) · Zbl 1185.76305
[39] Qi, D.; Luo, L.-S., Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow, J. fluid mech., 477, 201-213, (2003) · Zbl 1063.76542
[40] Qi, D.; Luo, L.-S.; Aravamuthan, R.; Strieder, W., Lateral migration and orientation of elliptical particles in Poiseuille flows, J. statist. phys., 107, 102-120, (2002) · Zbl 1126.82328
[41] Qian, Y.H.; d’Humières, D.; Lallemand, P., Lattice BGK models for the Navier-Stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
[42] M. Rheinländer. A consistent grid coupling method for lattice-Boltzmann schemes, J. Statist. Phys., in press. · Zbl 1107.82052
[43] Sone, Y., Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, (), 19-31
[44] Sone, Y., Kinetic theory and fluid dynamics, (2002), Birkhäuser Boston · Zbl 1021.76002
[45] Strang, G., Accurate partial differential methods II. non-linear problems, Numer. math., 6, 37-46, (1964) · Zbl 0143.38204
[46] Wetton, B., Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow, SIAM J. numer. anal., 34, 723-755, (1997) · Zbl 0886.76061
[47] Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. aerospace sci., 39, 329-367, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.