zbMATH — the first resource for mathematics

A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking. (English) Zbl 1079.76605
Summary: In this work we present a new interface tracking algorithm based on surface markers to reconstruct and advect interfaces in three-dimensional space. The algorithm is coupled to a marker redistribution method, which is area-preserving along the interface. The interface is described by a set of closed lines which define a coarse Lagrangian quadrangular mesh in the fixed computational grid. Fixed markers are located where the lines cross and are maintained during the whole simulation. At each time step the interface is first reconstructed and then all markers are advected by following streamlines. In the reconstruction step, new markers are determined by computing the intersections of the interface lines with the grid cell faces and by adding area conservation markers between fixed and grid intersection markers. Intersection and conservation markers defined at the previous time step are discarded. The method maintains a smooth geometrical description of the interface for both two-dimensional and three-dimensional tests with accurate volume conservation even in very challenging situations where the fluid bodies progressively deform and stretch developing localized regions with very high curvature and thin fluid filaments. The method compares favorably with front capturing methods, such as volume-of-fluid and level set, and other hybrid techniques, such as the particle level set method.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65C20 Probabilistic models, generic numerical methods in probability and statistics
68U20 Simulation (MSC2010)
Full Text: DOI
[1] Adams, R., Sobolev spaces, (1975), Academic Press New York · Zbl 0314.46030
[2] Aulisa, E.; Manservisi, S.; Scardovelli, R., A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. comput. phys., 188, 611, (2003) · Zbl 1127.76346
[3] Bell, J.B.; Colella, P.; Glaz, H.M., A second-order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, 257, (1989) · Zbl 0681.76030
[4] Chen, S.; Johnson, D.; Raad, P.; Fadda, D., The surfer marker and micro cell method, Int. J. numer. meth. fluids, 25, 749, (1997) · Zbl 0896.76064
[5] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. comput. phys., 183, 83, (2002) · Zbl 1021.76044
[6] Glimm, J.; Graham, M.J.; Grove, J.; Li, X.L.; Smith, T.M.; Tan, D.; Tangerman, F.; Zhang, Q., Front tracking in two and three dimensions, Comput. math. appl., 35, 1, (1998) · Zbl 1010.68538
[7] Glimm, J.; Grove, J.W.; Li, X.L.; Shyue, K.-M.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. sci. comput., 19, 703, (1998) · Zbl 0912.65075
[8] Gueyffier, D.; Nadim, A.; Li, J.; Scardovelli, R.; Zaleski, S., Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. comput. phys., 152, 423, (1999) · Zbl 0954.76063
[9] Guignard, S.; Marcer, R.; Fraunie, P., Solitary wave breaking on sloping beaches: 3-D two-phase flow simulation by SL-VOF method, Eur. J. mech. B - fluids, 20, 57-74, (2001) · Zbl 0983.76059
[10] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[11] Harvie, D.J.E.; Fletcher, D.F., A new volume of fluid advection algorithm: the stream scheme, J. comput. phys., 162, 1, (2000) · Zbl 0964.76068
[12] Jacqmin, D., Calculation of two-phase navier – stokes flows using phase-field modeling, J. comput. phys., 155, 96, (1999) · Zbl 0966.76060
[13] Jamet, D.; Lebaigue, O.; Coutris, N.; Delhaye, J.M., The second gradient method for the direct numerical simulation of liquid – vapor flows with phase change, J. comput. phys., 169, 624, (2001) · Zbl 1047.76098
[14] Kang, M.; Fedkiw, R.; Liu, X.D., A boundary condition capturing method for multiphase incompressible flow, SIAM J. sci. comput., 15, 323-360, (2000) · Zbl 1049.76046
[15] Leveque, R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627, (1996) · Zbl 0852.76057
[16] Mosso, S.; Swartz, B.; Kothe, D.; Ferrell, R., A parallel, volume-tracking algorithm for unstructured meshes, (), 368-375
[17] Osher, S.; Fedkiw, R., Level set methods: an overview and some recent results, J. comput. phys., 169, 463-502, (2001) · Zbl 0988.65093
[18] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int. J. numer. meth. fluids, 30, 775, (1999) · Zbl 0940.76047
[19] Puckett, E.G.; Almgren, A.S.; Bell, J.B.; Marcus, D.L.; Rider, W.J., A high-order projection method for tracking fluid interfaces in variable density incompressible flow, J. comput. phys., 130, 269, (1997) · Zbl 0872.76065
[20] W.J. Rider, D.B. Kothe, A marker particle method for interface tracking, in: H. Dwyer (Ed.), Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, 1995, p. 976
[21] W.J. Rider, D.B. Kothe, Stretching and tearing interface tracking methods, in: 12th AIAA CFD Conference, AIAA, 1995, p. 95
[22] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 141, 112, (1998) · Zbl 0933.76069
[23] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Ann. rev. fluid mech., 31, 567, (1999)
[24] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split eulerian – lagrangian advection, Int. J. numer. meth. fluids, 41, 251, (2003) · Zbl 1047.76080
[25] Sethian, J., Evolution, implementation and application of level set and fast marching methods for advancing fronts, J. comput. phys., 169, 463, (2001) · Zbl 0988.65095
[26] Shin, S.; Juric, D., Modeling three-dimensional multiphase flow using a level countour reconstruction method for front tracking without connectivity, J. comput. phys., 180, 427-470, (2002) · Zbl 1143.76595
[27] Smolarkiewicz, P.K., The multi-dimensional crowley advection scheme, Monthly weather rev., 110, 1968, (1982)
[28] Son, G.; Dhir, V.K., Numerical simulation of film boiling near critical pressures with a level set method, J. heat trans., 120, 183, (1998)
[29] Sussman, M.; Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, J. comput. phys., 148, 81, (1999) · Zbl 0930.76068
[30] Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[31] Sussman, M.; Puckett, E., A coupled level set and VOF method for computing 3D and axisymmetric incompressible two-phase flows, J. comput. phys., 162, 301, (2000) · Zbl 0977.76071
[32] Torres, D.; Brackbill, J.U., The point-set method: front tracking without connectivity, J. comput. phys., 165, 620, (2000) · Zbl 0998.76070
[33] Tryggvason, G.; Brunnen, B.; Esmaeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.J., A front-tracking method for the computations of multiphase flow, J. comput. phys., 169, 708, (2001) · Zbl 1047.76574
[34] Unverdi, S.O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[35] Welch, S.; Wilson, J., A volume of fluid based method for fluid flows with phase change, J. comput. phys., 160, 662, (2000) · Zbl 0962.76068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.