zbMATH — the first resource for mathematics

An introduction and tutorial on multiple-scale analysis in solids. (English) Zbl 1079.74508
Summary: Concurrent multiple-scale methods can be defined as those which combine information available from distinct length and time scales into a single coherent, coupled simulation. These methods have recently become both popular and necessary for the following reasons. One is the recent discovery of new, nanoscale materials, and the corresponding boom in nanotechnology research. Another factor is that experiments have conclusively shown the connection between microscale physics and macroscale deformation. Finally, the concept of linking disparate length and time scales has become feasible recently due to the ongoing explosion in computational power.
We present a detailed introduction to the available technologies in the field of multiple-scale analysis. In particular, our review centers on methods which aim to couple molecular-level simulations (such as molecular dynamics) to continuum level simulations (such as finite element and meshfree methods). Using this definition, we first review existing multiple-scale technology, and explain the pertinent issues in creating an efficient yet accurate multiple-scale method. Following the review, we highlight a new multiple-scale method, the bridging scale, and compare it to existing multiple-scale methods. Next, we show example problems in which the bridging scale is applied to fully nonlinear problems. Concluding remarks address the research needs for multiple-scale methods in general, the bridging scale method in particular, and potential applications for the bridging scale.

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74A60 Micromechanical theories
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
Full Text: DOI
[1] W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, An introduction to computational nano mechanics and materials, Comput. Methods Appl. Mech. Engrg., in this issue · Zbl 1079.74506
[2] Zhou, M.; Rosakis, A.J.; Ravichandran, G., Dynamically propagating shearbands in impact-loaded prenotched plates–i. experimental investigations of temperature signatures and propagation speed, J. mech. phys. solids, 44, 981-1006, (1996)
[3] Li, S.; Liu, W.K.; Rosakis, A.J.; Belytschko, T.; Hao, W., Meshfree Galerkin simulations of dynamic shearband propagation and failure mode transition, Int. J. solids struct., 39, 1213-1240, (2002) · Zbl 1090.74698
[4] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[5] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1680, (1995) · Zbl 0840.73078
[6] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods engrg., 21, 901-931, (1995) · Zbl 0885.76078
[7] Guduru, P.R.; Rosakis, A.J.; Ravichandran, G., Dynamic shearbands: an investigation using high speed optical and infrared diagnostics, Mech. mater., 33, 371-402, (2001)
[8] H.S. Park, MS Thesis, Northwestern University
[9] G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1169.74635
[10] Abraham, F.F.; Broughton, J.; Bernstein, N.; Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. lett., 44, 783-787, (1998)
[11] Broughton, J.Q.; Abraham, F.F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and applications, Phys. rev. B, 60, 2391-2403, (1999)
[12] Foulkes, W.M.C.; Haydock, R., Phys. rev. B, 39, 12520, (1989)
[13] Abraham, F.F.; Broughton, J.Q.; Bernstein, N.; Kaxiras, E., Spanning the length scales in dynamic simulation, Comput. phys., 12, 538-546, (1998)
[14] Rudd, R.E.; Broughton, J.Q., Coarse-grained molecular dynamics and the atomic limit of finite elements, Phys. rev. B, 58, 5893-5896, (1998)
[15] Belytschko, W.L.T.; Moran, B., Nonlinear finite elements for continua and structures, (2002), John Wiley and Sons
[16] Ruth, R.D., IEEE trans. nucl. sci., 2669, (1983)
[17] Tadmor, E.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. mag. A, 73, 1529-1563, (1996)
[18] Tadmor, E.; Phillips, R.; Ortiz, M., Mixed atomistic and continuum models of deformations in solids, J. ACM, 4529-4534, (1996)
[19] Arroyo, M.; Belytschko, T., An atomistic-based finite deformation membrane for single layer crystalline films, J. mech. phys. solids, 50, 1941-1977, (2002) · Zbl 1006.74061
[20] Zhang, P.; Huang, Y.; Gao, H.; Hwang, K.C., Fracture nucleation in single-wall carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials, J. appl. mech., 69, 454-458, (2002) · Zbl 1110.74793
[21] Diestler, D.J., Coarse-grained descriptions of multiple scale processes in solid systems, Phys. rev. B, 66, 184104.1-184104.7, (2002)
[22] Shilkrot, L.E.; Curtin, W.A.; Miller, R.E., A coupled atomistic/continuum model of defects in solids, J. mech. phys. solids, 50, 2085-2106, (2002) · Zbl 1151.74307
[23] E.G. Karpov, G.J. Wagner, W.K. Liu, A green’s function approach to deriving wave-transmitting boundary conditions in molecular dynamics simulations, Comput. Mater. Sci., in press · Zbl 1080.74050
[24] G.J. Wagner, E.G. Karpov, W.K. Liu, Molecular dynamics boundary conditions for regular crystal lattices, Comput. Methods Appl. Mech. Engrg., in this issue · Zbl 1079.74526
[25] Doll, J.D.; Dion, D.R., Generalized Langevin equation approach for atom/solid-surface scattering: numerical techniques for Gaussian generalized Langevin dynamics, J. chem. phys., 65, 3762-3766, (1976)
[26] Adelman, S.A.; Doll, J.D., Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids, J. chem. phys., 64, 2375-2388, (1976)
[27] Cai, W.; DeKoning, M.; Bulatov, V.V.; Yip, S., Minimizing boundary reflections in coupled-domain simulations, Phys. rev. lett., 85, 3213-3216, (2000)
[28] E, W.; Huang, Z.Y., A dynamic atomistic-continuum method for the simulation of crystalline materials, J. comput. phys., 182, 234-261, (2002) · Zbl 1013.82022
[29] Hughes, T.; Feijoo, G.; Mazzei, L.; Quincy, J., The variational multiscale method–a paradigm for computational mechanics, Comput. methods appl. mech. engrg., 166, 3-24, (1998) · Zbl 1017.65525
[30] Liu, W.K.; Uras, R.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech., 64, 861-870, (1997) · Zbl 0920.73366
[31] Wagner, G.J.; Liu, W.K., Hierarchical enrichment for bridging scales and meshfree boundary conditions, Int. J. numer. methods engrg., 50, 507-524, (2001) · Zbl 1006.76073
[32] Zhang, L.T.; Wagner, G.J.; Liu, W.K., A parallel meshfree method with boundary enrichment for large-scale cfd, J. comput. phys., 176, 483-506, (2002) · Zbl 1060.76096
[33] D. Qian, Ph.D. Thesis, Northwestern University
[34] H. Kadowaki, W.K. Liu, Multiscale analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., in this issue
[35] D. Qian, G.J. Wagner, W.K. Liu, A multi-scale projection method for the analysis of carbon nanotubes, Comput. Methods Appl. Mech. Engrg., in this issue · Zbl 1079.74595
[36] Liu, W.K., Development of mixed time partition procedures for thermal analysis of structures, Int. J. numer. methods engrg., 19, 125-140, (1983) · Zbl 0497.73084
[37] Liu, W.K.; Belytschko, T., Mixed-time implicit – explicit finite elements for transient analysis, Comput. struct., 15, 445-450, (1982) · Zbl 0488.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.