×

zbMATH — the first resource for mathematics

A novel fully implicit finite volume method applied to the lid-driven cavity problem. I: High Reynolds number flow calculations. (English) Zbl 1078.76046
Summary: A novel implicit cell-vertex finite volume method is described for the solution of the Navier-Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit vector normal to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented, and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two-dimensional lid-driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burggraf, Journal of Fluid Mechanics 24 pp 113– (1966)
[2] Gatski, Journal of Computational Physics 48 pp 1– (1982)
[3] Ghia, Journal of Computational Physics 48 pp 387– (1982)
[4] Gustafson, Journal of Computational Physics 64 pp 279– (1986)
[5] Gustafson, Journal of Computational Physics 70 pp 271– (1987)
[6] Soh, Journal of Computational Physics 79 pp 113– (1988)
[7] Goodrich, Journal of Computational Physics 90 pp 219– (1990)
[8] Kupferman, SIAM Journal on Scientific Computing 23 pp 1– (2001)
[9] Guo, Applied Numerical Mathematics 35 pp 307– (2000)
[10] Allievi, International Journal for Numerical Methods in Fluids 32 pp 439– (2000)
[11] Kjellgren, Computational Mechanics 20 pp 541– (1997)
[12] Liu, Computer Methods in Applied Mechanics and Engineering 190 pp 4301– (2001)
[13] Calhoon, Computers & Fluids 26 pp 525– (1997)
[14] Chang, International Journal for Numerical Methods in Fluids 24 pp 375– (1997)
[15] Wright, Computers & Fluids 24 pp 63– (1995)
[16] Aydin, International Journal for Numerical Methods in Fluids 37 pp 45– (2001)
[17] Grigoriev, International Journal for Numerical Methods in Fluids 25 pp 907– (1997)
[18] Grigoriev, International Journal for Numerical Methods in Engineering 46 pp 1127– (1999)
[19] Mai-Duy, International Journal for Numerical Methods in Fluids 37 pp 65– (2001)
[20] Hou, Journal of Computational Physics 118 pp 329– (1995)
[21] Shen, Journal of Computational Physics 95 pp 228– (1991)
[22] A Uzawa-type pressure solver for the Lanczos-?-Chebyshev spectral method. Computers & Fluids 2003; submitted.
[23] Botella, Computers & Fluids 26 pp 107– (1997)
[24] Barragy, Computers & Fluids 26 pp 453– (1997)
[25] Henderson, Computer Methods in Applied Mechanics and Engineering 175 pp 395– (1999)
[26] Botella, Computers & Fluids 27 pp 421– (1998)
[27] Botella, International Journal for Numerical Methods in Fluids 36 pp 125– (2001)
[28] Moffatt, Journal of Fluid Mechanics 18 pp 1– (1964)
[29] On scraping viscous fluid from a plane surface. In Miszellaneen der Angewandten Mechanik (Fetschrift Walter Tollmein), (ed.). Akademie-Verlag: Berlin, 1962; 313-315.
[30] Hansen, Computers & Fluids 23 pp 225– (1994)
[31] Davies, Journal of Computational Physics 172 pp 119– (2001)
[32] Gatski, Applied Numerical Mathematics 7 pp 227– (1991)
[33] Gresho, Annual Review of Fluid Mechanics 23 pp 413– (1991)
[34] Pozrikidis, Journal of Engineering Mathematics 41 pp 237– (2001)
[35] Pozrikidis, Journal of Fluid Mechanics 357 pp 29– (1998)
[36] Chang, International Journal for Numerical Methods in Fluids 37 pp 125– (2001)
[37] Xue, Journal of Non-Newtonian Fluid Mechanics 87 pp 337– (1999)
[38] Xue, Computers Methods in Applied Mechanics and Engineering 180 pp 305– (1999)
[39] Meister, Zeitschrift Fur Angewandte Mathematik und Mechanik 78 pp 743– (1998)
[40] Sedaghat, Aeronautical Journal 103 pp 113– (1999)
[41] Meister, Journal of Computational Physics 140 pp 311– (1998)
[42] Morton, RAIRO?Modél. Math. Anal. Numér. 28 pp 699– (1994)
[43] Morton, Mathematics of Computation 66 pp 1389– (1997)
[44] Sahin, International Journal for Numerical Methods in Fluids 42 pp 79– (2003)
[45] Numerical solution of the incompressible Navier-Stokes equations in primitive variables on unstaggered grids. In Incompressible Computational Fluid Dynamics, (eds). Cambridge University Press: Cambridge, 1993; 183-201. · Zbl 1189.76386
[46] Bruneau, Journal of Computational Physics 89 pp 389– (1990)
[47] Deng, Computers & Fluids 23 pp 1029– (1994)
[48] Knoll, SIAM Journal on Scientific Computing 19 pp 291– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.