zbMATH — the first resource for mathematics

An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. (English) Zbl 1078.76022
Summary: The unsteady boundary-layer flows caused by an impulsively stretching flat plate is solved by means of an analytic approach. Unlike perturbation techniques, this approach gives accurate analytic approximations uniformly valid for all dimensionless time. Besides analytic formula for the local skin friction is given, which agrees well with numerical results and thus is useful in the related industries.

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI
[1] Sakiadis, B.C., Boundary layer behavior on continuous solid surface, Aiche j., 7, 26-28, (1961)
[2] Crane, L., Flow past a stretching plate, Z. angew. math. phys., 21, 645-647, (1970)
[3] Banks, W.H.H., Similarity solutions of the boundary-layer equations for a stretching wall, J. mec. theor. appl., 2, 375-392, (1983) · Zbl 0538.76039
[4] Banks, W.H.H.; Zaturska, M.B., Eigensolutions in boundary-layer flow adjectent to a stretching wall, IMA J. appl. math., 36, 263-273, (1986) · Zbl 0619.76011
[5] Grubka, L.J.; Bobba, K.M., Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME J. heat transfer, 107, 248-250, (1985)
[6] Ali, M.E., Heat transfer characteristics of a continuous stretching surface, Wärme stoffübertrag., 29, 227-234, (1994)
[7] Erickson, L.E.; Fan, L.T.; Fox, V.G., Heat and mass transfer on a moving continuous flat plate with suction or injection, Indust. eng. chem., 5, 19-25, (1996)
[8] Gupta, P.S.; Gupta, A.S., Heat and mass transfer on a stretching sheet with suction or blowing, Canada J. chem. eng., 55, 744-746, (1977)
[9] Chen, C.K.; Char, M.I., Heat and mass transfer on a continuous stretching surface with suction or blowing, J. math. anal. appl., 135, 568-580, (1988) · Zbl 0652.76062
[10] Chaudhary, M.A.; Merkin, J.H.; Pop, I., Similarity solutions in the free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media, Eur. J. mech., B/fluids, 14, 217-237, (1995) · Zbl 0835.76100
[11] Elbashbeshy, E.M.A., Heat transfer over a stretching surface with variable surface heat flux, J. phys. D: appl. phys., 31, 1951-1954, (1998)
[12] Magyari, E.; Keller, B., Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. mech. B—fluids, 19, 109-122, (2000) · Zbl 0976.76021
[13] Stewartson, K., On the impulsive motion of a flat plate in a viscous fluid (part I), Quart. J. mech, 4, 182-198, (1951) · Zbl 0043.19101
[14] Stewartson, K., On the impulsive motion of a flat plate in a viscous fluid(part II), Quart. J. mech. appl. math., 22, 143-152, (1973) · Zbl 0295.76020
[15] Hall, M.G., The boundary layer over an impulsively started flat plate, Proc. R. soc. A, 310, 401-414, (1969) · Zbl 0182.28403
[16] Dennis, S.C.R., The motion of a viscous fluid past an impulsively started semi-infinite flat plate, J. inst. math. appl., 10, 105-117, (1972) · Zbl 0267.76025
[17] Watkins, C.B., Heat transfer in the boundary layer over an impulsively stearted flat plate, J. heat transfer, 97, 282-484, (1975)
[18] Seshadri, R.; Sreeshylan, N.; Nath, G., Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion, Int. J. heat mass transfer, 45, 1345-1352, (2002) · Zbl 1121.76394
[19] Pop, I.; Na, T.Y., Mech. res. comm., 23, 413, (1996)
[20] Wang, C.Y.; Du, G.; Miklavcic, M.; Chang, C.C., SIAM. J. appl. math., 57, 1, (1997)
[21] Nazar, N.; Amin, N.; Pop, I., Unsteady boundary layer flow due to stretching surface in a rotating fluid, Mech. res. commun., 31, 121-128, (2004) · Zbl 1053.76017
[22] Williams, J.C.; Rhyne, T.H., Boundary layer development on a wedge impulsively set into motion, SIAM J. appl. math., 38, 215-224, (1980) · Zbl 0443.76039
[23] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[24] Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl. math. comput., 147, 499-513, (2004) · Zbl 1086.35005
[25] Liao, S.J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. fluid mech., 488, 189-212, (2003) · Zbl 1063.76671
[26] Liao, S.J.; Campo, A., Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. fluid mech., 453, 411-425, (2002) · Zbl 1007.76014
[27] Liao, S.J., A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[28] Ayub, M.; Rasheed, A.; Hayat, T., Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int. J. eng. sci., 41, 2091-2103, (2003) · Zbl 1211.76076
[29] Hayat, T.; Khan, M.; Ayub, M., On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int. J. eng. sci., 42, 123-135, (2004) · Zbl 1211.76009
[30] Hayat, T.; Khan, M.; Asghar, S., Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech., 168, 213-232, (2004) · Zbl 1063.76108
[31] Hayat, T.; Khan, M.; Asghar, S., Magnetohydrodynamic flow of an Oldroyd 6-constant fluid, Appl. math. comput., 155, 417-425, (2004) · Zbl 1126.76388
[32] Ifidon EO. Numerical studies of viscous incompressible flow between two rotating concentric spheres. J Appl Math, in press. · Zbl 1121.76316
[33] Allan FM, Syam MI. On the analytic solutions of the non-homogenous Blasius problem. J Comput Appl Math, in press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.