×

zbMATH — the first resource for mathematics

Exact and explicit travelling wave solutions for the nonlinear Drinfeld–Sokolov system. (English) Zbl 1078.35093
Summary: The Drinfeld-Sokolov system is investigated by using the tanh method and the sine-cosine method. A variety of exact travelling wave solutions with compact and noncompact structures are formally derived. The study reveals the power of the two schemes in handling identical systems.

MSC:
35Q35 PDEs in connection with fluid mechanics
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35B10 Periodic solutions to PDEs
Software:
MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wang, J.P., A List of 1+1 dimensional integrable equations and their properties, J. nonlinear math. phys., 9, 213-233, (2002) · Zbl 1362.37137
[2] Olver, P.J., Applications of Lie groups to differential equations, (1993), Springer New York · Zbl 0785.58003
[3] Goktas, U.; Hereman, E., Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. symb. comput., 24, 5, 591-622, (1997) · Zbl 0891.65129
[4] Zabusky, N.J.; Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. rev. lett., 15, 240-243, (1965) · Zbl 1201.35174
[5] Wadati, M., Introduction to solitons, Pramana: J. phys., 57, 5-6, 841-847, (2001)
[6] Wadati, M., The exact solution of the modified kortweg-de Vries equation, J. phys. soc. jpn., 32, 1681-1687, (1972)
[7] Fordy, A.P., Soliton theory: a survey of results, (1990), MUP Manchester
[8] Newell, A.C., Solitons in mathematics and physics, (1985), SIAM Philadelphia · Zbl 0565.35003
[9] Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E., Theory of solitons, (1984), Plenum NY · Zbl 0598.35002
[10] Kivshar, Y.S.; Pelinovsky, D.E., Self-focusing and transverse instabilities of solitary waves, Phys. rep., 331, 117-195, (2000)
[11] Kadomtsev, B.B.; Petviashvili, V.I., On the stability of solitary waves in weakly dispersive media, Sov. phys. dokl., 15, 539-541, (1970) · Zbl 0217.25004
[12] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. phys. A, 23, 4805-4822, (1990) · Zbl 0719.35085
[13] Rosenau, P.; Hyman, J.M., Compactons: solitons with finite wavelengths, Phys. rev. lett., 70, 5, 564-567, (1993) · Zbl 0952.35502
[14] Dusuel, S.; Michaux, P.; Remoissenet, M., From kinks to compactonlike kinks, Phys. rev. E, 57, 2, 2320-2326, (1998)
[15] Ludu, A.; Draayer, J.P., Patterns on liquid surfaces: cnoidal waves, compactons and scaling, Phys. D, 123, 82-91, (1998) · Zbl 0952.76008
[16] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys., 60, 7, 650-654, (1992) · Zbl 1219.35246
[17] Malfliet, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Phys. scr., 54, 563-568, (1996) · Zbl 0942.35034
[18] Malfliet, W., The tanh method: II. perturbation technique for conservative systems, Phys. scr., 54, 569-575, (1996) · Zbl 0942.35035
[19] Wazwaz, A.M., The tanh method for travelling wave solutions of nonlinear equations, Appl. math. comput., 154, 3, 713-723, (2004) · Zbl 1054.65106
[20] Wazwaz, A.M., Partial differential equations: methods and applications, (2002), Balkema Publishers The Netherlands
[21] Wazwaz, A.M., New solitary-wave special solutions with compact support for the nonlinear dispersive K(m,n) equations, Chaos, solitons & fractals, 13, 2, 321-330, (2002) · Zbl 1028.35131
[22] Wazwaz, A.M., Exact specific solutions with solitary patterns for the nonlinear dispersive K(m,n) equations, Chaos, solitons & fractals, 13, 1, 161-170, (2001) · Zbl 1027.35115
[23] Wazwaz, A.M., General compactons solutions for the focusing branch of the nonlinear dispersive K(n,n) equations in higher dimensional spaces, Appl. math. comput., 133, 2/3, 213-227, (2002) · Zbl 1027.35117
[24] Wazwaz, A.M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n,n) equations in higher dimensional spaces, Appl. math. comput., 133, 2/3, 229-244, (2002) · Zbl 1027.35118
[25] Wazwaz, A.M., Compactons dispersive structures for variants of the K(n,n) and the KP equations, Chaos, solitons & fractals, 13, 5, 1053-1062, (2002) · Zbl 0997.35083
[26] Wazwaz, A.M., Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. math. comput., 139, 1, 37-54, (2003) · Zbl 1029.35200
[27] Wazwaz, A.M., A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl. math. comput., 135, 2-3, 399-409, (2003) · Zbl 1027.35120
[28] Wazwaz, A.M., A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl. math. comput., 135, 2-3, 324-411, (2003) · Zbl 1027.35121
[29] Wazwaz, A.M., Compactons in a class of nonlinear dispersive equations, Math. comput. model., 37, 3/4, 333-341, (2003) · Zbl 1044.35078
[30] Wazwaz, A.M., Distinct variants of the KdV equation with compact and noncompact structures, Appl. math. comput., 150, 365-377, (2004) · Zbl 1039.35110
[31] Wazwaz, A.M., Variants of the generalized KdV equation with compact and noncompact structures, Comput. math. appl., 47, 583-591, (2004) · Zbl 1062.35120
[32] Wazwaz, A.M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos, solitons & fractals, 22, 249-260, (2004) · Zbl 1062.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.